簡易檢索 / 詳目顯示

研究生: 楊乃豪
Yang, Nai-Hao
論文名稱: 室溫下應力誘發氧化鋅奈米晶體成長與機制研究
Spontaneous growth and mechanism of stress-induced ZnO nanocrystals in ambient atmosphere at room temperature
指導教授: 林樹均
Lin, Su-Jien
張守一
Chang, Shou-Yi
口試委員: 朝春光
Chao, Chuen-Guang
李勝隆
Lee, Sheng-Long
曹春暉
Tsau, Chun-Huei
林樹均
Lin, Su-Jien
張守一
Chang, Shou-Yi
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 159
中文關鍵詞: 氧化鋅應力誘發BHR 機制
外文關鍵詞: ZnO, Stress-induced, BHR mechanism
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於良好的光電特性,一維氧化物的奈米結構已被廣泛研究。高溫的氣相成長法與低溫的水溶液法也已被用來製備多種氧化物的奈米結構。然而要將這些奈米結構做應用的圖型化生長,往往需要複雜的製備過程、較高的反應溫度、昂貴的設備、化學藥劑與晶種層的使用等等。本研究利用奈米壓痕儀在常溫與不使用化學藥劑的情況下,直接對 ZnO 與 TiO2 的氧化物薄膜進行壓痕與刮痕測試,透過應力誘發的方式來成長一維的 ZnO 與 TiO2 奈米結構。由於極大應力的施加使得氧化物表面產生斷鍵,並在潮濕的氛圍下隨後產生水解反應與晶體重構 (定義為 斷鍵-水解-重構 的機制),隨後自發性成長一維氧化物的奈米結構。此一維氧化物奈米結構直接從薄膜上選擇定位生長的方法,也為未來一維氧化物奈米結構作圖形化生長提供了一個環保且新穎的方法。


    One-dimensional oxide-based nanostructures have been intensively studied because of their excellent optoelectronic properties. Due to the drawbacks of vapor-phase or aqueous solution growth, including complex processes, high synthesis temperatures, expensive precursors, and also preceding patterned seeding or subsequent patterning processes, there is an urgent need to grow patterned nanostructures by a simple and direct process at low temperatures. In the present study, stress-induced growths of one-dimensional single-crystalline ZnO and TiO2 nanostructures directly from ZnO and TiO2 films, respectively, in an ambient atmosphere at room temperature were developed by indentation or scratching without the use of any reaction precursors. Under large applied stresses oxide bonds broke assisted by hydrolysis in the presence of moisture, and subsequently were reconstructed (defined as a bond breaking-hydrolysis-reconstruction mechanism) leading to the spontaneous growth of one-dimensional nanocrystals. The direct growth at controlled locations provides an opportunity for the simple preparation of patterned nanostructures of oxide-based materials.

    摘要 I Abstract II 誌謝 III Content VII List of Figures XI Chapter 1. Introduction 1 1.1. One-dimensional nanostructure 1 1.2. Introduction and application of one-dimensional ZnO nanostructure 2 1.3. Synthesis method for 1-D ZnO nanostructure 7 1.4. Growth of stress-induced nanostructure 11 1.5. The interaction of H2O and metal oxide surface 17 1.6. Mechanochemistry 22 1.7. How Zn(OH)2 convert to ZnO 26 Chapter 2. Experiment 31 2.1. Producer of experiment 31 2.1.1. Synthesis of ZnO films 31 2.1.2. Synthesis of TiO2 films 31 2.1.3. The process of indent and scratch on ZnO and TiO2 films 34 2.1.4. The storage condition of the specimens 37 2.1.5. Thermal heating of stress-induced nanostructure 37 2.1.6. The preparation of TEM specimens 38 2.2. Instrument introduction 39 2.2.1. X-ray Diffractometer 39 2.2.2. Field Emission Scanning Electron Microscopy (FESEM) 39 2.2.3. Dual-Beam Focused Ion Beam (DB-FIB) 40 2.2.4. Field Emission Transmission Electron Microscopy (FETEM) 41 2.2.5. Energy Dispersive Spectrometer (EDS) 42 2.2.6. Raman spectroscopy 43 2.2.7. Cathodoluminescsnce (CL) and Photoluminescsnce (PL) measurement 45 Chapter 3. Results and Discussions 46 3.1. Spontaneous growth of one-dimensional ZnO nanocrystals in ambient atmosphere at room temperature 46 3.1.1. Foreword 46 3.1.2. The analysis of as-deposited ZnO films 47 3.1.3. Growth of ZnO nanocrystals from film by nanoindenter 48 3.1.4. Growth mechanism of oxide-based nanocrystals 52 3.1.5. Growth of one-dimensional TiO2 nanocrystals 57 3.1.6. Optoelectronic properties and fabrication feasibility 59 3.2. Stress-induced interaction of ZnO film surface with water 69 3.2.1. Foreword 69 3.2.2. Growth of nanowire at different experimental condition 70 3.2.3. Observation of interfaces between nanowire and ZnO films 73 3.2.4. Raman analyses of different region on scratched ZnO films 79 3.3. Structural evolution of single-crystalline ZnO nanowires 92 3.3.1. Foreword 92 3.3.2. TEM analyses of dehydration on the surface of Zn(OH)2 93 3.3.3. Formation of ZnO nanowire from Zn(OH)2-hydrate nanowire 96 3.3.4. Structural evolution and mechanism of ZnO nanowire 98 Chapter 4. Conclusions 110 Chapter 5. Future works 113 Reference 114

    [1] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots", Science, 271 (1996) 933-937.
    [2] G. Cao, “Nanostructures and nanomaterials - sythesis, properties, and applications.", Imperial College Press, London, 2004, pp. 51-228.
    [3] S. Iijima, “Helical microtubules of graphitic carbon", Nature, 354 (1991) 56-58.
    [4] X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices", Nature, 409 (2001) 66-69.
    [5] M. H. Huang, S. Ma, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-temperature ultraviolet nanowire nanolasers", Science, 292 (2001) 1897-1899.
    [6] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang and R. J. Saykally, “Single gallium nitride nanowire lasers", Nat. Mater., 1 (2002) 106-110.
    [7] J. Goldberger, R. He, Y. Zhan, S. Lee, H. Yan, H. J. Choi and P. Yang, “Single-crystal gallium nitride nanotubes", Nature, 422 (2003) 599-602.
    [8] Z. L. Wang, “Nanobelts, nanowires, and nanodiskettes of
    semiconducting oxides - from materials to nanodevices", Adv. Mater., 15 (2003) 432-436.
    [9] Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications", J. Phys.: Condens. Matter., 16 (2004) 829-858.
    [10] S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: solution growth and functional properties", Nano Res., 4 (2011) 1013-1098.
    [11] Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu and S. Xu, “Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics”, Mater. Sci. Eng. R, 70 (2010) 320-329.
    [12] Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang and Y. Zhang, “Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces”, Adv. Funct. Mater., 14 (2004) 943-956.
    [13] M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration”, Science, 305 (2004) 1269-1273.
    [14] S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks and D. B. Janes, “Fabrication of fully transparent nanowire transistors for transparent and flexible electronics”, Nat. Nanotechnol., 2 (2007) 378-384.
    [15] J. Song, Y. Zhang, C. Xu, W. Wu and Z. L. Wang, “Polar charges induced electric hysteresis of ZnO nano/microwire for fast data storage”, Nano Lett., 11 (2011) 2829-2834.
    [16] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang,
    “Self-powered nanowire devices", Nat. Nanotechnol., 5 (2010) 366-373.
    [17] S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires", Nat. Nanotechnol., 6 (2011) 506-510.
    [18] O. Dulub, L. A. Boatner and U. Diebold, “STM study of the geometric and electronic structure of ZnO (0001)-Zn, (000-1)-O,(10-10), and (11-20) surfaces", Surf. Sci., 519 (2002) 201-217.
    [19] B. Meyer and D. Marx, “Density-functional study of the structure and stability of ZnO surfaces", Phys. Rev. B , 67 (2003) 035403 (p11).
    [20] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport”, Adv. Mater., 13 (2001) 113-116.
    [21] Z. W. Pan, Z. R. Dai and Z. L. Wang, “ Nanobelts of
    semiconducting oxides", Science, 209 (2001) 1947-1949.
    [22] Z. R. Dai, Z. W. Pan and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation " , Adv. Funct. Mater., 13 (2003) 9-24.
    [23] X. Y. Kong and Z. L. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts", Nano Lett., 3 (2003) 1625-1631.
    [24] X. Y. Kong and Z. L. Wang, “Polar-surface dominated ZnO
    nanobelts and the electrostatic energy induced nanohelixes,
    nanosprings, and nanospirals”, Appl. Phys. Lett., 84 (2004)
    975-977.
    [25] P. X. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao and Z. L. Wang, “Conversion of zinc oxide nanobelt into
    superlattice-structured nanohelices”, Science, 309 (2005)
    1700-1704.
    [26] X. Y. Kong, Y. Ding, R. S. Yang and Z. L. Wang, “Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts”, Science, 303 (2004) 1348-1351.
    [27] R. S. Yang, Y. Ding and Z. L. Wang, “Deformation-free
    single-crystal nanohelixes of polar nanowires”, Nano Lett., 4 (2004) 1309-1312.
    [28] Y. Xi, J. H. Song, S. Xu, R. S. Yang, Z. Y. Gao, C. G. Hu and Z. L. Wang, “Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerator”, J. Mater. Chem., 19 (2009) 9260-9264.
    [29] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport”, Adv. Mater., 13 (2001) 113-116.
    [30] J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition”, Adv. Mater., 14 (2002) 215-218.
    [31] W. I. Park, G. C. Yi, M. Kim and S. J. Pennycook, “Nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy”, Adv. Mater., 14 (2002) 1841-1843.
    [32] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties”, Adv. Func. Mater., 12 (2002) 323-331.
    [33] S. C. Lyu, Y. Zhang and C. J. Lee, “Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method”, Chem. Mater., 15 (2003) 3294-3299.
    [34] F. Fang, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, X. W. Fan, B. H. Li and X. H. Wang, “Growth of well-aligned ZnO nanowire arrays on Si substrate”, Nanotechnology, 18 (2007) 235604 (pp5).
    [35] R. S. Wagner and W. C. Ellis, “Vapor-liquid solid mechanism of single crystal growth”, Appl. Phys. Lett., 4 (1964) 89-90.
    [36] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solution”, Adv. Mater., 15 (2003) 464-466.
    [37] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays”, Angew. Chem., 115 (2003) 3139-3142.
    [38] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions”, Chem. Mater., 17 (2005) 1001-1006.
    [39] B. S. Kang, S. J. Pearton and F. Ren, “Low temperature (<100 C) patterned growth of ZnO nanorod arrays on Si.”, Appl. Phys. Lett., 90 (2007) 083104 (pp3).
    [40] G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, C. S. Lee, S. T. Lee and C. H. Liu, “Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates”, Appl. Phys. Lett., 92 (2008) 053111(pp3).
    [41] M. Guo, C. Y. Yang, M. Zhang, Y. J. Zhang, T. Ma and X. D. Wang, “Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays”, Electrochimica Acta, 53 (2008) 4633-4641.
    [42] S. Y. Chang, N. H. Yang and Y. C. Huang, “Hydrothermal growth and interface correlation of highly aligned ZnO nanorod arrays on UV-activated sol-gel transparent conducting films”, J. Electrochem. Soc., 156 (2009) 200-204.
    121
    [43] H. Y. Hunsiker and L.W. Kenspf, “Growth of whisker on
    tin-aluminum bearing”, Q. Tans. SAE., 1 (1947) 6-26.
    [44] D. Eshelby, “A tentative theory of metallic whisker grovrth”, Phys. Rev., 91 (1953) 755-756.
    [45] N.Tu, “Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions”, Phys. Rev. B, 49 (1994) 2030-2034.
    [46] Z. Lee and D. N. Lee, “Spontaneous growth mechanism of tin whickers", Acta Mater., 46 (1998) 3701-3714.
    [47] E. Chason, N. Jadhav, F. Pei, E. Buchovecky and A. Bower, “Growth of whiskers from Sn surfaces: driving forces and growth mechanisms", Prog. Surf. Sci., 88 (2013) 103-131.
    [48] K. N. Tu and J. C. M. Li, “A Spontaneous whisker growth on lead-free solder finishes", Mater. Sci. Eng., 409 (2005) 131-139.
    [49] F. Q. Yang, “Analysis of the lattice diffusion controlled growth of metallic whiskers”, J. Phys. D, 40 (2007) 4034-4038.
    [50] H. Tohmyoh, M. Yasuda and M. Saka, “Controlling Ag whisker growth using very thin metallic films", Scripta Mater., 63 (2010) 289-292.
    [51] M. Saka, F. Yamaya and H. Tohmyoh, “Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films", Scripta Mater., 56 (2007) 1031-1034.
    [52] W. J. Boettinger, C. E. Johnson, L. A. Bendersky, K. W. Moon, M. E. Williams and G. R. Stafford, “Whisker and hillock formation on Sn, Sn-Cu, and Sn-Pb electrodeposits", Acta Mater., 53 (2005) 5033-5050.
    [53] J. W. Lee, M. G. Kang, B. S. Kim, B. H. Hong, D. Whanga and S.W. Hwang, “Single crystalline aluminum nanowires with ideal resistivity", Scripta Mater., 63 (2010) 1009-1012.
    [54] X. Xiao, A. K. Sachdev, D. Haddad, Y. Li, B. W Sheldon and S. K. Soni, “Stress-induced Sn nanowires from Si–Sn nanocomposite coatings", Appl. Phys. Lett., 97 ( 2010) 141904 (pp3).
    [55] W. Shim, J. Ham, K. I. Lee, W. Y. Jeung, M. Johnson and W. Lee, “On-film formation of Bi nanowires with extraordinary electron mobility", Nano Lett., 9 (2009) 18-22.
    [56] J. Ham, W. Shim, D. H. Kim, S. Lee, J. Roh, S. W. Sohn, K. H. Oh, P. W. Voorhees and W. Lee, “Direct growth of compound semiconductor nanowires by on-film formation of nanowires: bismuth telluride", Nano Lett, 9 (2009) 2867-2872.
    [57] J. Ham, W. Shim, D. H. Kim, K. H. Oh, P. W. Voorhees and W. Lee, “Watching bismuth nanowires grow", Appl. Phys. Lett., 98 (2001) 043102 (pp3).
    [58] J. Ham, J. Kang, J. S. Noh and W. Lee, “Self-assembled Bi interconnections produced by on-film formation of nanowires for in situ device fabrication", Nanotechnology, 21 (2010) 165302 (pp5).
    [59] X. Jiang, T. Herricks and Y. Xia, “CuO nanowires can be
    synthesized by heating copper substrates in air", Nano Lett., 2 (2002) 1333-1338.
    [60] R. Memaa, L. Yuan, Q. Dub, Y. Wang and G. Zhou, “Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper", Chem. Phys. Lett., 512 (2011) 87-91.
    [61] M. Chen, Y. Yue and Y. Ju, “Growth of metal and metal oxide nanowires driven by the stress-induced migration", J. Appl. Phys., 111 (2012) 104305 (pp6).
    [62] Y. Yue, M. Chen, Y. Ju and L. Zhang, “Stress-induced growth of well-aligned Cu2O nanowire arrays and their photovoltaic effect", Scripta Mater., 66 (2012) 81-84.
    [63] F. Yang and Y. Li, “Indentation-induced tin whiskers on
    electroplated tin coatings”, J. Appl. Phys., 104 (2008) 113512 (pp4).
    [64] J. J. Williams, N. C. Charpman and N. Chawla, “Mechanisms of Sn hillock growth in vacuum by in situ nanoindentation in a scanning electron microscope (SEM)", J. Eletron. Mater., 42 (2013) 224-229.
    [65] T. Shibutani, “Effect of grain size on pressure-induced tin whisker formation”, IEEE T. Electron. Pack., 33 (2010) 177-182.
    [66] G. E. Brown, “How minerals react with water", Science, 294 (2001) 67-70.
    [67] M. A. Nugent, S. L. Brantley, C. G. Pantano and P. A. Maurice, “The influence of natural ineral coatings on feldspar weathering", Nature, 395 (1998) 588-591.
    [68] D. Marx, “Throwing tetrahedral dice”, Science, 303 (2004) 634-636.
    [69] K. Onda, B. Li, J. Zhao, K. D. Jordan, J. Yang and Hr. Petek, “Wet electrons at the H2O/TiO2(110) surface this copy”, Science, 308 (2005) 1154-1158.
    [70] A. Ӧnsten, D. Stoltz, P. Palmgren, S. Yu, M. Gӧthelid and U. O. Karlsson, “Water adsorption on ZnO(0001): transition from triangular surface structures to a disordered hydroxyl terminated phase”, J. Phys. Chem. C, 114 (2010) 11157-11161.
    [71] O. bikondoa, C. L. Pang, R. Ithnin, C. A. Muryn, H. Onishi and G. Thornton., “Direct visualization of defect-mediated dissociation of water on TiO2(110)”, Nat. Mater., 5 (2006) 189-192.
    [72] J. T. Newberg, D. E. Starr, S. Yamamoto, S. Kaya, T. Kendelewicz, E. R. Mysak, S. Porsgaard, M. B. Salmeron, G. E. Brown, J. A. Nilsson and H. Bluhm, “Autocatalytic surface hydroxylation of MgO(100) terrace sites observed under ambient conditions”, J. Phys. Chem. C, 115 (2011) 12864-12872.
    [73] S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks and D. B. Janes, “Metallization of ZnO(10-10) by adsorption of hydrogen, methanol, and water: angle-resolved photoelectron spectroscopy”, Nat. Nanotechnol. , 2 (2007) 378-384.
    [74] C. Wӧll, “The chemistry and physics of zinc oxide surfaces”, Prog. Surf. Sci., 82 (2007) 55-120.
    [75] B. Meyer, H. Rabaa and D. Marx, “Water adsorption on ZnO(10-10): from single molecules to partially dissociated monolayers”, Phys. Chem. Chem. Phys., 8 (2006) 1513-1520.
    [76] D. Raymand, A. C.T. V. Duin, W. A. Goddard III, K. Hermansson and D. Spångberg, “Hydroxylation structure and proton transfer reactivity at the zinc oxide water interface", J. Phys. Chem. C, 115 (2011) 8573-8579.
    [77] Y. Paukku, A. Michalkova and J. Leszczynski, “Quantum-chemical comprehensive study of the organophosphorus compounds adsorption on zinc oxide surfaces”, J. Phys. Chem. C, 113 (2009)1474-1485.
    [78] O. Dulub, B. Meyer and U. Diebold, “Observation of the
    dynamical change in a water monolayer adsorbed on a ZnO
    surface”, Phys. Rev. Lett. , 95 (2005) 136101(pp4).
    [79] B. Meyer, D. Marx, O. Dulub, U. Diebold, M. Kunat, D.
    Langenberg and C. Wӧll, “Partial dissociation of water leads to stable superstructures on the surface of zinc oxide”, Angew. Chem. Int. Ed., 43 (2004) 6641-6645.
    [80] T. Kaewmaraya, B. Pathak, C. M. Araujo, A. L. Rosa and R. Ahuja, “Water adsorption on ZnO(10-10): the role of intrinsic defects”, EPL, 97 (2012) 17014.
    [81] A. Calzolari and A. Catellani, “Water adsorption on nonpolar ZnO(10-10) surface: a microscopic understanding”, J. Phys. Chem. C, 113 (2009) 2896-2902.
    [82] H. Hu, H. F. Ji and Y. Sun, “The effect of oxygen vacancies on water wettability of a ZnO surface”, Phys. Chem. Chem. Phys., 15 (2013) 16557-16565.
    [83] Y. Yang, G. Wang and X. Li, “Water molecule-induced stiffening in ZnO nanobelts”, Nano Lett., 11 (2011) 2845-2848.
    [84] G. Kaupp, “Mechanochemistry and cocrystals”, CrystEngComm, 11 (2009) 388-403.
    [85] S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steedk and D. C. Waddelli, “Mechanochemistry: opportunities for new and cleaner synthesis", Chem. Soc. Rev., 41 (2012) 413-447.
    [86] F. Delogu, “Hydrogen generation by mechanochemical reaction of quartz powders in water”, Int. J. Hydrogen Energy, 36 (2011) 15145-15152.
    [87] L. Shen, N. Bao, K. Yanagisawa, K. Domen, A. Gupta and C. A. Grimes, “Direct synthesis of ZnO nanoparticles by a solution-free mechanochemical reaction”, Nanotechnology, 17 (2006) 5117-5123.
    [88] M. V. Zdujić O. B. Milośević and Lj. Č Karanović,
    “Mechanochemical treatment of ZnO and Al2O3 powders by ball
    milling", Mater. Lett., 13 (1992) 125-129.
    [89] A. Dodd, A. McKinley, M. Saunders and T. Tsuzuki,
    “ Mechanochemical synthesis of nanocrystalline SnO2 - ZnO
    photocatalysts", Nanotechnology, 17 (2006) 692-698.
    [90] A. Stanković, L. Veselinović, S. D. Škapin, S. Marković and D. Uskoković, “Controlled mechanochemically assisted synthesis of ZnO nanopowders in the presence of oxalic acid", J. Mater. Sci., 46 (2011) 3716-3724.
    [91] A. Tadjarodi and M. I. M. Imani, “Synthesis and characterization of the special ZnO nanostructure by mechanochemical process”, Mater. Lett., 92 (2013) 108-110.
    [92] X. Hu, Y. Masuda, T. Ohji and K. Kato,
    “Dissolution-recrystallization induced hierarchical structure in ZnO: bunched roselike and core-shell-like particles”, Cryst. Growth Des., 10 (2010) 626-631.
    [93] T. Ichikawa and S. Shiratori, “Fabrication and evaluation of ZnO nanorods by liquid-phase deposition”, Inorg. Chem., 50 (2011) 999-1004.
    [94] S. Xu and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties”, Nano Res., 4 (2011) 1013-1098.
    [95] W. Stumm and J. J. Morgan, “Aquatic chemistry: chemical
    equilibria and rates in natural waters", Wiley Interscience, New York, 1995, pp. 1002.
    [96] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, J. Mater. Chem., 12 (2002) 3773-3778.
    [97] P. Li, H. Liu, B. Lu and Y. Wei, “Formation mechanism of 1D ZnO nanowhiskers in Aqueous Solution”, J. Phys. Chem. C, 114 (2010) 21132-21137.
    [98] M. Wang, Y. Zhou, Y. Zhang, S. H. Hahn and E. J. Kim, “From Zn(OH)2 to ZnO: a study on the mechanism of phase
    transformation”, CrystEngComm, 13 (2011) 6024-6026.
    [99] N. J. Nicholas, G. V. Franks and W. A. Ducker, “The mechanism for hydrothermal growth of zinc oxide”, CrystEngComm, 14 (2012) 1232-1240.
    [100] M. Umetsu, M. Mizuta, K. Tsumoto, S. Ohara, S. Takami, H. Watanabe, I. Kumagai and T. Adschiri, “Bioassisted
    room-temperature immobilization and mineralization of zinc
    oxide—the structural ordering of ZnO nanoparticles into a
    flower-type morphology”, Adv. Mater., 17 (2005) 2571-2575.
    [101] L. Anjia, Z. Wei and H. Matsui, “One-pot crystalline ZnO nanorod growth in mineralizing peptide gels", RSC Adv., 2 (2012) 5516-5519.
    [102] C. Y. Chiu, L. Ruana and Y. Huang, “Biomolecular specificity controlled nanomaterial synthesis”, Chem. Soc. Rev., 42 (2013) 2512-2527.
    [103] K. Y. Tomizaki, S. Kubo, S. A. Ahn, M. Satake and T. Imai, “Biomimetic alignment of zinc oxide aanoparticles along a peptide nanofiber”, Langmuir, 28 (2012) 13459-13466.
    [104] R. Vaidyanathan, M. Dao, G. Ravichandran and S. Suresh, “Study of mechanical deformation in bulk metallic glass through instrumented indentation", Acta Mater., 49 (2001) 3781-3789.
    [105] A. J. Moulson and J. M. Herbert, “Electroceramics: materials, properties, applications", Chapman and Hall, London, 1990, pp. 265-317.
    [106] S. Sridhar, A. E. Giannakopoulos and S. Suresh, “Mechanical and electrical responses of piezoelectric solids to conical indentation", J. Appl. Phys., 87 (2000) 8451-8456.
    [107] K. W. McElhaney and Q. Ma, “Investigation of moisture-assisted fracture in SiO2 films using a channel cracking technique", Acta Mater., 52 (2004) 3621-3629.
    [108] Z. Liu, Z. Jin, W. Li and J. Qiu, “Preparation of ZnO porous thin films by sol-gel method using PEG template", Mater. Lett., 59 (2005) 3620-3625.
    [109] S. Y. Chang, Y. C. Huang, H. H. Chu, Y. C. Hsiao, N. H. Yang and C. F. Lin, “Low-temperature curing of aluminum-doped zinc oxide films assisted by ultraviolet exposure", Script. Mater., 59 (2008) 646-648.
    [110] X. Cui, Z. Wang, S. Tan, B. Wang, J. Yang, J. G. Hou,
    “ Identifying hydroxyls on the TiO2 (110)1×1 surface with
    scanning tunneling microscopy", J. Phys. Chem. C, 113 (2009) 13204-13208.
    [111] A. K. Jena and M. C. Chaturvedi, “Phase transformations in materials", Prentice Hall, New Jersey, 1992, pp. 158-173.
    [112] R. R. Vaidyanathan, M. Dao, G. Ravichandran and S. Suresh, “Study of mechanical deformation in bulk metallic glass through instrumented indentation", Acta. Mater., 49 (2001) 3781-3789.
    [113] J. Li,; K. J. V. Vliet, T. Zhu, S. Yip and S. Suresh, “Atomistic mechanisms governing elastic limit and incipient", Nature, 418 (2002) 307-310.
    [114] B. Zhao, F. Chen, Q. Huang and J. Zhang, “Brookite TiO2 nanoflowers", Chem. Commun., (2009), 5115-5117.
    [115] R. Cecchinia,; A. Fabrizi,; C. Paternoster,; W. Zhang and G. Roventi.,“Fabrication of nanopatterned metal layers on silicon by nanoindentation/nanoscratching and electrodeposition " , Electrochim. Acta, 55 (2010) 3355-3360.
    [116] L. Li, M. Hirtz, W. Wang, C. Du, H. Fuchs and L. Chi,
    “Patterning of polymer electrodes by nanoscratching", Adv.
    Mater., 22 (2010) 1374-1378.
    [117] L. J. Guo,“Recent progress in nanoimprint technology and its applications", J. Phys. D: Appl. Phys., 37 (2004) 123-141.
    [118] M. Willander, L. L. Yang, A. Wadeasa, S. U. Ali, M. H. Asif, Q. X. Zhao and O. Nur, “Zinc oxide nanowires: controlled low temperature growth and some electrochemical and optical nano-devices”, J. Mater. Chem., 19 (2009) 1006-1018.
    [119] K. A. Alim, V. A. Fonoberov, M. Shamsa and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals”, J. Appl. Phys., 97 (2005) 124313 (pp5).
    [120] R. Wahab, S. G. Ansari, Y. S. Kim, H. K. Seo, G. S. Kim, G. Khang and H. S. Shin, “Low temperature solution synthesis and characterization of ZnO nano-flowers”, Mater. Res. Bull., 42 (2007) 1640-1648.
    [121] Z. Li, Y. Xiong and Y. Xie, “Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route”, Inorg. Chem., 42 (2003) 8105-8109.
    [122] H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis, B. K. Meyer, G. Kaczmarczyk and A. Hoffmann, “Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure”, Appl. Phys. Lett., 80 (2002) 210-212.
    [123] S. Y. Chang, N. H. Yang, Y. C. Huang, S. J. Lin, T. Z. Kattamis and C. Y. Liu, “Spontaneous growth of one-dimensional nanostructures from films in ambient atmosphere at room temperature: ZnO and TiO2”, J. Mater. Chem., 21 (2011) 4264-4271.
    [124] B. A. Korgel, “Self-assembled nanocoils”, Science, 303 (2004) 1308-1309.
    [125] X. Y. Kong, Y. Ding, R. Yang and Z. L. Wang, “Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts”, Science, 303 (2004) 1348-1351.
    [126] P. Shimpi, S. K. Yadav, R. Ramprasad and P. X. Gao, “Conversion of [0001] textured ZnO nanofilm into [011􀴤
    0] directed nanowires driven by CO adsorption: in situ carbothermal synthesis and complementary first principles thermodynamics simulations”, J. Phys. Chem. C, 115 (2011) 7372-7376.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE