簡易檢索 / 詳目顯示

研究生: 何宸志
Chen-Chih Ho
論文名稱: 微流體系統中壓損變化與表面微結構尺寸關係之研究
Measurement Of Pressure loss in a Micro-Channel With Microstructures on the Sidewall
指導教授: 饒達仁
Da-Jeng Yao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 92
中文關鍵詞: 連續流壓損粗糙度
外文關鍵詞: Continuous flow, Pressure drop, Roughness
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,主要為架設一微流道量測系統,並且使用微機電製程技術,製作出微流道晶片提供測量流道中壓降與雷諾數關係,證實在流道水力直徑縮減至100μm左右時,流場仍然適用古典流體力學理論(對層流、液體而言)分析,即流道壓降與雷諾數呈現正比關係,並且證實系統的準確度。
    其次,我們利用PDMS翻模製程,在微流道之中設計各種不同尺寸之微小結構,並且在流道上覆蓋鐵氟龍使表面成為疏水性,企圖使液體與流道壁面之總接觸面積下降,從而改善微流道的流阻,經過測量發現微結構在尺寸間距與流量較小時,具有降低微流道壓降的能力。為此學生提出一個合適的理論模型,説明當結構間距縮減到一定尺寸之後,由於壁面疏水性的影響,以及水的表面張力作用,使流體不會滲入微結構的間隙之中,因此流體和壁面的總接觸面積下降,水力直徑提高,流阻變小。最後,將此理論推廣至其他尺寸的微流道中,發展出一套能夠有效降低微流道流阻之微結構尺寸設計方式。


    In this study, we established a micro-channel detection system to detect characteristics of micro-flow. The testing micro-channel chips which were made by Micro-Electro-Mechanical Systems (MEMS) were used to find the relation between pressure drop and Reynolds number. We find that with hydraulic diameter decreasing to 100μm the water flowing in a micro-channel can be analyzed by classical hydrodynamics, meant that Reynolds number and pressure drop are direct proportion.
    Then, we used PDMS demolding fabrication to get a micro-channel with microstructures on its sidewall, and got hydrophobic surfaces by coating Teflon, attempted to decrease total liquid-solid contact area in the micro-channel. It results that flow resistant of the micro-channel is decreased. According to our measurement, flow resistant of a micro-channel at low flow rate and low width microstructures on its sidewall decreased clearly. In order to explain this phenomenon, we created a new theory: water won’t leak into gaps of microstructures because of hydrophobic surface and surface tension, resulting that total water-solid contact area decrease and flow resistant of the micro-channel decrease too. Finally, a method which can calculate size of microstructures to satisfy pressure drop decreasing condition with different kinds of micro-channels is proposed.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 序論 1 1.1 微流道之簡介與重要性 1 1.2 文獻回顧 3 1.3 本文架構 13 第二章 原理 16 2.1 雷諾數 16 2.2 水力直徑 17 2.3 與層流相關理論 19 2.4 壁面粗糙度對流道之影響 21 2.5 流道中其他壓力損失 21 2.6 接觸角 23 2.7 表面張力與毛細壓力 26 第三章 系統簡介 28 3.1 實驗系統架構 28 3.2 模擬參數設定 30 3.2.1 晶片模型設計 32 3.2.2 模擬條件之設定 33 3.2.3 模擬流程 34 第四章 製程設計 37 4.1. 雷射加工技術概要 37 4.2 陽極接合之原理 39 4.3 雷射加工微流道製程簡介 41 4.4 PDMS翻模製程簡介 44 第五章 實驗過程 49 5.1 微流道壓降量測系統準確性驗證 49 5.1.1 主要損失之測量方式 51 5.1.2 模擬數據之結果 55 5.2 PDMS微流道晶片結構尺寸設計 59 5.3 PDMS壁面的疏水性 61 5.4 流道的壓降與雷諾數之關係 63 第六章 結果與討論 71 6.1 水是否流入微結構對壓降影響之探討 71 6.2 雙側微結構設計之對準誤差對流阻變化的影響 78 6.3 結構尺寸對最大工作壓力之關係 80 6.4 理論模型推廣 83 第七章 結論與未來展望 87 7.1 提昇晶片性能之方式 87 7.2 晶片設計改良 88 參考文獻 90

    1. D.B.Tuckermann and R.F.W.Pease, "High performance heat sinking for VLSI." IEEE Electron Device Letters, 1981. 2(5): p. 126-129.
    2. S.W.Kang, J.S.Chen, and J.Y.Hung, "Surface roughness of (110) orientation silicon based micro heat exchanger channel." Machine Tools and Manufacture, 1998. 38(5-6): p. 663-668.
    3. S.P.Narayanan and G.Venkatarathnam, "Analysis of performance of heat exchangers used in practical micro miniature refrigerators." Cryogenics, 1999. 39(6): p. 517-527.
    4. C.W.Liu, C.Gau, and B.T.Dai, "Design and fabrication development of a micro flow heated channel with measurements of the inside micro-scale flow and heat transfer process." Biosensors and Bioelectronics, 2004. 20(1): p. 91-101.
    5. R.M.McCormick, et al., "Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates." Analytical Chemistry, 1997. 69(14): p. 2626-2630.
    6. M.Streek, et al., "Mechanisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation." Biotechnology, 2004. 112(1-2): p. 79-89.
    7. R.H.Liu, et al., "Passive mixing in a three-dimensional serpentine microchannel." Microelectromechanical Systems, 2000. 9(2): p. 190-197.
    8. P.Gao, S.L.Person, and M.F.Marinet, "Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels." Thermal Sciences, 2002. 41(11): p. 1017-1027.
    9. G.M.Mala and D.Li, "Flow characteristics of water in microtubes." Heat and Fluid Flow, 1999. 20(2): p. 142-148.
    10. I.Papautsky, et al., "Laminar fluid behavior in microchannels using micropolar fluid theory." Sensors and Actuators A: Physical, 1999. 73(1): p. 101-108.
    11. M.Scholle, A.Rund, and N.Aksel, "Drag reduction and improvement of material transport in creeping films." Archive of Applied Mechanics, 2006. 75(2-3): p. 93-112.
    12. D.W.Bechert, M.Bruse, and W.Hage, "Experiments with three-dimensional riblets as an idealized model of shark skin." Experiments in Fluids, 2000. 28(5): p. 403-412.
    13. T.H.Chen, Y.J.Chuang, and F.G.Tseng. "A Wettability Switchable Surface Driven by Electrostatic Induced Surface Morphology Change Without Energy Interference On Reagents in Droplets." in IEEE Micro Electro Mechanical Systems, 2006 Istanbul. 22-26, Jan., 2006. Istanbul: p.178-181
    14. S.Kandlikar, et al., "Heat Transfer and Fluid Flow in Minichannels and Microchannels." 1st ed. 2005, Amsterdam: Elsevier. 450. p.87-136
    15. N.A.Patankar, "On the Modeling of Hydrophobic Contact Angles on Rough Surfaces." Langmuir, 2003. 19(4): p. 1249-1253.
    16. T.Fujii, "PDMS-based microfluidic devices for biomedical applications." Microelectronic Engineering, 2002. 61-62(1): p. 907-914.
    17. C.D.Meinhart, S.T.Wereley, and J.G.Santiago, "PIV measurements of a microchannel flow." Experiments in Fluids, 1999. 27(5): p. 414-419.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE