簡易檢索 / 詳目顯示

研究生: 吳林榮
Wu Lin-Jung
論文名稱: 射頻磁控濺鍍鋯酸鉛鋇鐵電薄膜變容器之特性研究
Characteristics of (Pb,Ba)ZrO3 Thin Film Varactors Deposited by RF-Magnetron Sputtering
指導教授: 吳振名
Wu Jenn-Ming
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 190
中文關鍵詞: 微波變容器鋯酸鉛鋇
外文關鍵詞: microwave, varactor, (Pb,Ba)ZrO3
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋯酸鉛鋇(Pb,Ba)ZrO3鐵電薄膜材料擁有隨不同外加直流偏壓而改變介電常數的特性,稱之為調變性(Tunability)。運用此特性可製作變容器、調變濾波器(Tunable Filters)與相位移器(Phase Shifter Devices)等元件。由磁控濺鍍法鍍製的鋯酸鉛鋇薄膜的基本介電性質在本研究中被詳細探討。濺鍍法鍍製的薄膜與同樣成分的溶凝膠法鍍製的薄膜相比,擁有相當高的調變性以及相差無幾的介電損。藉由鉛酸鋇電極當作緩衝層,我們可在400度以上結晶並得到(111)優選取向的鋯酸鉛鋇薄膜。然而,在PBZ/BPO介面附近會形成一富含鉛的介面層產生,其厚度約為40 nm,而藉由不同厚度的介電性質量測,可以推斷介電常數隨著厚度而大幅減少的可能原因包括:(1) PBZ/BPO介面層; (2) Pt/PBZ介面處的低介電層; 和(3) 晶界造成的影響。
    藉由適當的參雜元素以及適當的參雜含量,鋯酸鉛鋇的許多介電性質都可獲得改善,如降低漏電流,降低介電損,以及降低電容溫度係數(temperature coefficient of capacitance)等,最佳值分別為J=1.32×10-8 A/cm2 (外加電場為1 MV/cm)、tanδ=0.003和TCC=1.13×10-4。此外,材料的高頻微波性質可利用環形電容(circular-patch capacitor)和網路分析儀(network analyzer)來量測,結果顯示藉由適當的參雜量以及參雜元素得到的濺鍍鋯酸鉛鋇薄膜很適合作為微波元件的應用材料。


    The dielectric constant of ferroelectric material, (Pb,Ba)ZrO3, (PBZ) depends on dc voltages. Because of this tunable characteristic, it is applied to fabricate the varactors, tunable filters and phase shifter devices. The dielectric properties of the PBZ films deposited by RF- magnetron sputtering were investigated in this thesis. The sputtered PBZ film exhibits much higher tunability (60% at 200kV/cm) and only a little higher loss tangent (0.015) than the corresponding sol-gel PBZ films. (111) prefer-oriented PBZ thin film was successfully grown on BaPbO3 (BPO) buffer layer at temperatures once 400oC. Non-stoichiometry of Pb near the BPO interface was observed. The interface consisted of a Pb-rich interfacial layer of ~40nm. The thickness-dependent dielectric properties of Pt/PBZ/BPO capacitors can be attributed to (1) the interfacial layer at PBZ/BPO interface, (2) dead layer at Pt/PBZ interface, and (3) the grain boundary dead layers
    With doping of Pt or Al2O3, the dielectric properties of PBZ films are greatly improved. The doped PBZ films possess low leakage current, low dissipation factor, and low temperature coefficient of capacitance. The best dielectric properties are J=1.32×10-8 A/cm2 (applied field : 1 MV/cm), tanδ=0.003, and TCC=1.13×10-4, respectively. The microwave dielectric properties were measured with a circular-patch capacitor geometry and a network analyzer (HP8753ES, Agilent). The results demonstrate that the sputtered PBZ films are promising materials for microwave device applications by optimum doping content and doping element.

    Contents Abstract (Chinese)……………………………………………………. I Abstract (English)…………………………………………….. II Acknowledgement……………………………………………….. IV Contents………………………………..………………………. VI List of Tables……………………………...…………….…. XIII List of Figures………………………………………………... XIV Chapter 1 Introduction…………………………………................ 1 1.1 Introduction to the Ferroelectric Materials……… 1 1.2 Varactors made with ferroelectric materials……… 2 1.2.1 Varactors used in personal communication systems (PCS) …4 1.2.2 Varactors used in wireless and satellite communications systems. 6 1.3 Motivation and objectives of research.....……. 8 Chapter 2 Background Study…………………………………. 15 2.1 Varactors……………………………………………………. 15 2.1.1 Varactors in parallel structure (MIM structure)……..................... 17 2.1.2 Varactors in coplanar structure (MOS structure)……................... 19 2.2 Typical tunable ferroelectric materials…………. 21 2.2.1 SrTiO3 (STO)…………………………………….…….. 23 2.2.2 (Ba,Sr)TiO3 (BST)……………………………………... 24 2.2.3 (Ba,Zr)TiO3 (BZT)……………………………………… 25 2.2.4 (Pb,Sr)TiO3 (PST)……………………………………… 26 2.2.5 (Pb, Ba)ZrO3 (PBZ)………………………………………28 2.3 Basic concepts of microwave measurement...………… 29 2.3.1 Resonant Methods……………………………………….. 31 2.3.2 Waveguide and Transmission Line Methods………… 33 2.3.3 Capacitor Methods............................... 35 Chapter 3 Experimental procedures……………………….. 51 3.1 Substrate preparation………………………………………………...... 51 3.2 Fabrication of bottom and top electrodes…………… 52 3.2.1 Deposition of BaPbO3 (BPO) thin films…………… 52 3.2.2 Deposition of Pt thin films………………………… 52 3.2.3 Deposition of Ag thin films………………………… 52 3.3 Fabrication of ferroelectric thin films…………… 53 3.3.1 Deposition of (Pb,Ba)ZrO3 thin films……………… 53 3.3.2 Deposition of doped (Pb,Ba)ZrO3 thin films……… 53 3.4 Characteristic measurements…………………………… 54 3.4.1 Structure analysis……………………………………… 54 3.4.1.1 X-ray Diffraction (XRD) and Grazing Incident X-ray Diffraction (GIXD)………………………………………...… 54 3.4.1.2 Field Emission Scanning Electron Microscopy (FESEM)…… 55 3.4.1.3 Raman spectroscopy…………………………………… 55 3.4.2 Compositional depth profile and chemical bonding 56 3.4.2.1 Secondary Ion Mass Spectroscopy (SIMS)………… 56 3.4.2.2 X-ray Photoelectron Spectroscopy (XPS)………… 56 3.4.3 Electrical properties………………………………… 56 3.4.3.1 Dielectric measurements…………………………… 56 3.4.3.2 Microwave frequency measurements………………… 57 3.4.3.3 Leakage current measurements……………………… 57 Chapter 4 Electric tunable behavior of sputtered lead barium zirconate thin films………………… 63 4.1 Introduction………………………………………………… 63 4.2 Experimental Details…………………………………………………… 64 4.3 Results and discussion………………………………………………… 64 4.3.1 Structure and surface morphology…………………… 65 4.3.2 Polarization-electric field curves (P-E)………… 66 4.3.3 Capacitance-voltage curve at high frequency…… 67 4.3.4 Electrical properties at microwave frequency…… 69 4.4 Conclusions………………………………………………… 72 Chapter 5 Effect of conductive BaPbO3 electrode on the structural and dielectric properties of (Pb,Ba)ZrO3 films 81 5.1 Introduction………………………………………………… 81 5.2 Experiments………………………………………………… 82 5.3 Results and Discussion………………………………… 84 5.3.1 Structure and surface morphology…………………… 84 5.3.2 Capacitance-voltage curves…………………………… 85 5.3.3 Current-voltage characteristics…………………… 87 5.3.4 Current transients……………………………………… 89 5.3.5 AC conductivity………………………………………… 93 5.3.6 Chemical analysis……………………………………… 95 5.4 Conclusions………………………………………………… 96 Chapter 6 Thickness-dependent dielectric properties of nanoscale Pt/(Pb,Ba)ZrO3/BaPbO3 capacitors…………… 107 6.1 Introduction………………………………………………… 107 6.2 Experiments………………………………………………… 108 6.3 Results and discussion…………………………………… 110 6.3.1 Crystal structure and surface morphology………… 110 6.3.2 Electrical properties………………………………… 112 6.3.3 Thickness dependent dielectric properties……… 113 6.4 Conclusions………………………………………………… 117 Chapter 7 Reduced leakage current and conduction mechanisms of sputtered platinum-doped lead barium zirconate thin films……………… 127 7.1 Introduction………………………………………………… 127 7.2 Experiments………………………………………………… 129 7.3 Results and discussion………………………………… 130 7.3.1 Crystal structure and surface morphology………… 130 7.3.2 Capacitance-voltage curves…………………………… 131 7.3.3 Leakage currents………………………………………… 132 7.3.4 Chemical analysis……………………………………… 134 7.3.5 Raman scattering spectra……………………………… 137 7.4 Conclusions………………………………………………… 138 Chapter 8 Improved dielectric properties of Al2O3-doped Pb0.6Ba0.4ZrO3 thin films for tunable microwave applications…… 149 8.1 Introduction………………………………………………… 149 8.2 Experiments………………………………………………… 150 8.3 Results and discussion………………………………… 152 8.3.1 Structure and surface morphology…………………… 152 8.3.2 Polarization-electric field curves (P-E)………… 152 8.3.3 Dielectric properties as a function of frequency 153 8.3.4 Dielectric properties as a function of temperature 155 8.3.5 Dielectric loss mechanisms…………………………… 157 8.4 Conclusions………………………………………………… 158 Chapter 9 Conclusions………………………………………… 167 References……………………………………………………… 169 Publications……………………………………………………… 189

    References

    [1] M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Devices, Clarendon Press, Oxford, 87 (1977).
    [2] X. X. Xi, H. C. Li, W. Si, A. A. Sirenko, I. A. Akimov, J. R. Fox, A. M. Clark, and J. Hao, J. Electroceram., 4, 393 (2000).
    [3] N. Ledermann, J. Baborowski, A. Seifert, B. Willing, S. Hiboux, P. Muralt, N. Setter, and M. Forster, Integr. Ferroelectr., 35, 177 (2001).
    [4] J. Y. Park, Y. J. Yww, H. J. Nam, and J. U. Bu, IEEE MTT-S Int. Microwave Symp. Dig., 3, 2111 (2001).
    [5] J. Baborowski, N. Ledermann, P. Muralt, and D. Schmitt, Int. J. Comput. Eng. Sci., 4, 471 (2003).
    [6] J. J. Bernstein, S. L. Finberg, K. Houston, L. C. Niles, H. D. Chen, L. E. Cross, K. K. Li, and K. Udayakumar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44, 960 (1997).
    [7] A. R. von Hippel, Dielectrics and Waves (Artech House, Boston, 1995).
    [8] M. D. Domenico, D. A. Johnson, and R. H. Pantell, J. Appl. Phys., 33, 1697 (1962).
    [9] A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, J. Electroceram., 11, 5 (2003).
    [10] M. J. Lancaster, J. Powell, and A. Porch, Supercund. Sci. Technol., 11, 1323 (1998).
    [11] O. G. Vendik, E. K. Hollmann, A. B. Kozyrev, and A. M. Prudan, J. Supercond, 12, 325 (1999).
    [12] P. Padmini, T. R. Taylor, M. J. Lefevre, A. S. Nagra, R. A. York, and J. S. Speck, Appl. Phys. Lett., 75, 3186 (1999).
    [13] O. G. Vendik, E. Kollberg, S. S. Gevorgian, A. B. Kozyrev, and O. I. Soldatenkov, Electron. Lett., 31, 654 (1995).
    [14] P. K. Petrov and N. McN. Alford, Electron. Lett., 37, 1066 (2001).
    [15] E. G. Erker, A. S. Nagra, Y. Liu, P. Periaswamy, T. R. Taylor, J. Speck, and R. A. York, IEEE Microw. Guided Wave Lett., 10, 10 (2000).
    [16] Y. Liu, A. S. Nagra, E. G. Erker, P. Periaswamy, T. R. Taylor, J. Speck, and R. A. York, IEEE Microw. Guided Wave Lett., 10, 448 (2000).
    [17] A. Mahmud, T. S. Kalkur, A. Jamil, and N. Cramer, IEEE Microw. Wireless Compon. Lett., 16 (5), 261 (2006).
    [18] W. F. Hu, D. Zhang, M. J. Lancaster, T. W. Button, and B. Su, IEEE Trans. Microw. Theory Tech., 55 (2), 418 (2007).
    [19] V. N. Keis, A. B. Kozyrev, M. L. Khazov, J. Sok, and J. S. Lee, Electron. Lett., 34, 1107 (1998).
    [20] C. Lugo, G. A. Wang, J. Papapolymerou, Z. Y. Zhao, X. Y. Wang, and A. T. Hunt, IEEE Trans. Microw. Theory Tech., 55 (2), 376 (2007).
    [21] M. F. Iskander, Z. Zhang, Z. Yun, R. S. Isom, M. G. Hawkins, R. Emrick, B. Bosco, J. Synowczynski, and B. Gersten, IEEE Trans. Microw. Theory Tech., 49, 2547 (2001).
    [22] T. S. Kalkur, C. Cotey, K. Chen, and S. Sun, Integr. Ferroelectr., 56, 1123 (2003).
    [23] M. Norling, A. Vorobiev, H. Jacobsson, and S. Gevorgian, IEEE Trans. Microw. Theory Tech., 55 (2), 361 (2007).
    [24] S. S. Toncich, Integ. Ferroelectr. 28, 37 (2000).
    [25] A. Vorobiev, P. Rundqvist, K. Khamcha, and S. Gevorgian, Appl. Phys. Lett. 83, 3144 (2003).
    [26] A. Kozyrev, V. Osadchy, A. Pavlov, and L. Sengupta, IEEE MTT-S Int. Microwave Symp.Dig., 1355 (2000).
    [27] B. Acikel, Y. Liu, A. S. Nagra, T. R. Taylor, P. J. Hansen, J. S. Speck, and R. A. York, IEEE MTT-S Int. Microwave Symp.Dig., 1191 (2001).
    [28] A. Deleniv, S. Adadei, and S. Gevorgian, IEEE MTT-S Int. Microwave Symp.Dig., 1267 (2003).
    [29] B. Acikel, T. R. Taylor, P. J. Hansen, J. S. Speck, and R. A. York, IEEE MTT-S Int. Microwave Symp.Dig., 1467 (2002).
    [30] B. Acikel, T. R. Taylor, P. J. Hansen, J. S. Speck, and R. A. York, IEEE Microw. Wireless Compon. Lett., 12 (7), 237 (2002).
    [31] D. C. Collier, IEEE M7T-S Int. Microw. Symp. Dig., 199 (1992).
    [32] K. B. Kim, T. S. Yus, H. S. Kim, R. Y. Kim, H. G. Kim, and J. C. Lee, Proc. 34th European Microwave Conference, 1, 161 (2004).
    [33] J. S. Kim, B. H. Park, T. J. Choi, S. H. Shin, J. C. Lee, M. J. Lee, S. A. Seo, and I. K. Yoo, Integr. Ferroelectr., 66, 205 (2004).
    [34] M. H. Wu and J. M. Wu, Appl. Phys. Lett., 86, 022909 (2005).
    [35] G. F. Dionne, D. E. Oates, and D. H. Temme, IEEE Trans. Appl. Supercond., 5 (2), 2083 (1995).
    [36] M. J. Lancaster, Passive Microwave Device Applications of High Temperature Superconductors (Cambridge: Cambridge University Press), 1997.
    [37] H. D. Wu, K. F. Harsh, R. S. Irwin, W. Zhang, A. R. Mickelson, and Y. C. Lee, IEEE MTT-S Int. Microwave Symp.Dig., 1, 127 (1998).
    [38] C. T. C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz, Proc. IEEE, 86 (8), 1756 (1998).
    [39] C. Y. Lee and E. S. Kim, J. Microelectromech. Syst., 15 (4), 745 (2006).
    [40] S. S. Gevorgian and E. L. Kollberg, IEEE Trans. Microw. Theory Tech., 49 (11), 2117 (2001).
    [41] S. Gevorgian, A. Vorobiev, D. Kuylenstierna, A. Deleniv, S. Abadei, A. Eriksson, and P. Rundqvist, Integr. Ferroelectr., 66, 125 (2004).
    [42] G. T. Stauf, C. Ragaglia, J. F. Roeder, D. Vestyck, J.-P. Maria, T. Ayguavives, A. Kingon, A. Mortazawi, and A. Tombak, Integr. Ferroelectr., 39, 321 (2001).
    [43] D. C. Cube, J. Baborowski, P. Muralt, and N. Setter, Appl. Phys. Lett., 74, 3546 (1999).
    [44] B. A. Baumert, L. H. Chang, A. T. Matsuda, T.-L. Tsai, C. J. Tracy, R. B. Gregory, P. L. Fejes, N. G. Cave, W. Chen, D. J. Taylor, T. Otsuki, E. Fujii, S. Hayashi, and K. Suu, J. Appl. Phys. 82, 2558 (1997).
    [45] F. Ayguavives, Z. Jin, A. Tombak, J. P. Maria, A. Mortazawi, and A. I. Kingon, Integr. Ferroelectr. 39, 393 (2001).
    [46] S. Gevorgian, Int. J. RF Microwave Comput.-Aided Eng., 8, 433 (1998).
    [47] W. Fan, B. Kabius, J. M. Hiller, S. Saha, J. A. Carlisle, O. Auciello, R. P. H. Chang, and R. Ramesh, Appl. Phys. Lett., 82, 6192 (2003).
    [48] D. Barrow, C. V. R. V. Kumar, R. Pasual, and M. Sayer, Mater. Res. Soc. Symp. Proc., 243, 113 (1992).
    [49] P. Revesz, J. Li, N. Szabo Jr., J. W. Mayer, D. Caudillo, and E. R. Mayers, Mater. Res. Soc. Symp. Proc., 243, 101 (1992).
    [50] A. C. Reyes, S. M. El-Ghazaly, S. Dorn, M. Dydyk, D. K. Schroder, and H. Patterson, Proc. 46th Electronic Components and Technology Conf., Orlando, 382 (1996).
    [51] M. J. Dalberth, R. E. Stauber, J. C. Price, C. T. Rogers, and D. Galt, Appl. Phys. Lett., 72, 507 (1998).
    [52] P. M. Suherman, T. J. Jackson, Y. Koutsonas, R. A. Chakalov, and M. J. Lancaster, IEEE MTT-S Int. Microwave Symp.Dig., 265 (2004).
    [53] X. Y. Qi, J. Miao, X. F. Duan, and B. R. Zhao, J. Cryst. Growth, 277, 218 (2005).
    [54] Y. Gim, T. Hudson, Y. Fan, C. Kwon, A. T. Findikoglu, B. J. Gibbons, B. H. Park, and Q. X. Jia, Appl. Phys. Lett., 77, 1200 (2000).
    [55] S. V. Razumov, A. V. Tumarkin, M. M. Gaidukov, A. G. Gagarin, A. B. Kozyrev, O. G. Vendik, A. V. Ivanov, O. U. Buslov, and V. N. Keys, Appl. Phys. Lett., 81, 1675 (2002).
    [56] W. J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S. W. Kirchoefer, D. B. Chrisey, and J. S. Horwitz, Appl. Phys. Lett., 76, 1185 (2000).
    [57] G. E. Ponchak, A. N. Downey, and L. P. B. Katehi, Proc. IEEE Radio Frequency Integrated Circuits Symp., VII-1, 101 (1997).
    [58] Z. R. Hu, V.F. Fusco, Y. Wu, H. G. Gamble, B. M. Armstrong, and J.A.C. Stewart, IEEE MTT-S Int. Microwave Symp.Dig., 1, 299 (1996).
    [59] H. S. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, IEEE Microwave and Guided Wave Lett., 9, 395 (1999).
    [60] Y. H. Wu, H. S. Gamble, B. M. Armstrong, V. F. Fusco, and J. A. C. Stewart, IEEE Microwave and Guided Wave Lett., 9, 10 (1999).
    [61] C. Schollhorn, W. Zhao, M. Morschbach, and E. Kasper, IEEE Trans. Electron Devices, 50, 740 (2003).
    [62] B. Rong, J. N. Burghartz, L. K. Nanver, B. Rejaei, and M. van der Zwan, IEEE Electron Device Lett., 25 (4), 176 (2004).
    [63] J. A. Reynoso-Hernandez, R. Rangel-Rojo, M. Aceves, I. Zaldivar, L. E. Sanchez, and M. Herrera, IEEE Microw. Wireless Compon. Lett., 13 (12), 508 (2003).
    [64] D. C. Degroot, J. A. Beall, R. B. Marks, and D. A. Rudman, IEEE Trans. Appl. Supercond., 5, 2272 (1995).
    [65] F. Abbas, L. Davis, and J. Gallop, IEEE Trans. Appl. Supercond., 5, 3511 (1995).
    [66] A. B. Kozyrev, T. B. Samoilova, A. A. Golovkov, E. K. Hollmann, D. A. Kalinikos, V. E. Loginov, A. M. Prudan, O. I. Soldatenkov, D. Galt, C. H. Mueller, T. V. Rivkin, and G. A. Koepf, J. Appl. Phys., 84, 3326 (1998).
    [67] K. Bethe, Philips Res. Rep. (Suppl.), 2 (1970).
    [68] F. W. Van Keuls, C. H. Mueller, R. R. Romanofsky, J. D. Warner, F. A. Miranda, S. B. Majumder, M. Jain, A. Martines, R. S. Katiyar, and H. Jiang, Integr. Ferroelectr., 42, 207 (2002).
    [69] F. W. Van Keuls, C. H. Mueller, R. R. Romanofsky, J. D. Warner, F. A. Miranda, H. Jiang, Integr. Ferroelectr., 39(1-4), 1387 (2001).
    [70] C. B. Parker, J. P. Maria, and A. I. Kingon, Appl. Phys. Lett., 81, 340 (2002).
    [71] J. Im, O. Auciello, P. K. Baumann, S. K. Streiffer, D. Y. Kaufman, and A. R. Krauss, Appl. Phys. Lett., 76, 625 (2000).
    [72] W. Chang, J. S. Horwitz, A. C. Carter, J. M. Pond, S. W. Kirchoefer, C. M. Gilmore, and D. B. Chrisey, Appl. Phys. Lett., 74, 1033 (1999).
    [73] C. M. Carlson, T. V. Rivkim, P. A. Parilla, J. D. Perkins, D. S. Ginley, A. B. Kozyrev, V. N. Oshadchy, and A. S. Pavlov, Appl. Phys. Lett., 76, 1920 (2000).
    [74] S. Yamamichi, H. Yabuta, T. Sakuma, and Y. Miyasaka, Appl. Phys. Lett., 64, 1644 (1994).
    [75] T. M. Shaw, Z. Suo, M. Huang, E. Liniger, R. B. Laibowitz, and J. D. Baniecki, Appl. Phys. Lett., 75, 2129 (1999).
    [76] W. Chang, C. M. Gilmore, W. J. Kim, J. M. Pond, S. W. Kirchoefer, S. B. Qadri, D. B. Chrisey, and J. S. Horwitz, J. Appl. Phys., 87, 3044 (2000).
    [77] S. Ito, H. Funakubo, I. P. Koutsaroff, M. Zelner, and A. Cervin-Lawry, Appl. Phys. Lett., 90, 142910 (2007).
    [78] B. T. Lee and C. S. Hwang, Appl. Phys. Lett., 77, 124 (2000).
    [79] B. H. Park, E. J. Peterson, Q. X. Jia, J. Lee, X. Zeng, W. Si, and X. X. Xi, Appl. Phys. Lett., 78, 533 (2001).
    [80] Y. Fukuda, K. Numata, K. Aoki, and A. Nishimura, Jpn. J. Appl. Phys., 35, 5178 (1996).
    [81] X. H. Zhu, J. M. Zhu, S. H. Zhou, Z. G. Liu, N. B. Ming, S. G. Lu, H. L. W. Chan, and C. L. Choy, J. Electron. Materials, 32 (10), 1125 (2003).
    [82] S. B. Majumder, M. Jain, A. Martinez, R. S. Katiyar, F. W. VanKeuls, and F. A. Miranda, J. Appl. Phys., 90, 896 (2001).
    [83] S. Jun, Y. S. Kim, J. Lee, and Y. W. Kim, Appl. Phys. Lett., 78, 2542 (2001).
    [84] B. S. Kang, J. S. Lee, L. Stan, J. K. Lee, R. F. DePaula, P. N. Arendt, M. Nastasi, and Q. X. Jia, Appl. Phys. Lett., 85, 4702 (2004).
    [85] C. L. Canedy, S. Aggarwal, H. Li, T. Venkatesan, R. Ramesh, F. W. VanKeuls, R. R. Romanofsky, and F. A. Miranda, Appl. Phys. Lett., 77, 1523 (2000).
    [86] G. F. Huang and S. Berger, J. Appl. Phys., 93, 2855 (2003).
    [87] Z. Yuan, J. Liu, J. Weaver, C. L. Chen, J. C. Jiang, B. Lin, V. Giurgiutiu, A. Bhalla, and R. Y. Guo, Appl. Phys. Lett., 90, 202901 (2007).
    [88] S. E. Park, S. Wada, L.E. Cross, and T. R. Shrout, J. Appl. Phys., 86, 2746 (1999).
    [89] P. W. Rehrig, S. E. Park, S. T. Mckinstry, G. L. Messing, B. Jones, and T. R. Shrout, J. Appl. Phys., 86, 1657 (1999).
    [90] Z. Yu, R. Guo, A.S. Bhalla, J. Cryst. Growth, 233, 460 (2001).
    [91] J. Zhai, X. Yao, L. Zhang, and B. Shen, Appl. Phys. Lett., 84, 3136 (2004).
    [92] X. G. Tang, X. X. Wang, K. H. Wong, and H. L. W. Chan, Appl. Phys. A, 81, 1253 (2005).
    [93] D. Hannings, and A. Schnell, J. Am. Ceram. Soc., 65, 539 (1982).
    [94] F. S. Galasso, Perovskites and High Tc Superconductors, Gordon and Breach, Science Publishers, New York, 18 (1990).
    [95] S. Subrahmanyam and E. Goo, Acta mater., 46 (3), 817 (1998).
    [96] T. Ikeda, Jpn. J. Phys. Soc., 14, 1290 (1959).
    [97] E. Martines, S. Garcia, E. Marin, O. Vasallo, G. Pena-Rodriguez, A. Calderon, and J. M. Siqueiros, J. Mater. Sci., 39, 1233 (2004).
    [98] K. T. Kim and C. I. Kim, Thin Solid Films, 420-421, 544 (2002).
    [99] J. Zhai, X. Yao, Z. Xu, and H. Chen, J. Appl. Phys., 100, 034108 (2006).
    [100] E. Sawaguchi, G. Shirane, S. Hoshino, Phys. Rev., 83, 1078 (1951).
    [101] S. Roberts, J. Am. Ceram. Soc., 33, 63 (1953).
    [102] V. J. Tennery, J. Am. Ceram. Soc., 49, 483 (1966).
    [103] G. Shirane, Phys. Rev., 86, 219 (1952).
    [104] K. H. Yoon, S. C. Hwang, and D. H. Kang, J. Mater. Sci., 32, 17 (1997).
    [105] Phase Diagram for Ceramics, Fig. 862.
    [106] B. P. Pokharel and D. Pandey, J. Appl. Phys., 88, 5364 (2000).
    [107] G. Lu, A. Linsebigler, and J. T. Yates Jr., J. Phys. Chem., 98, 11733 (1994).
    [108] Y. L. Kuo and J. M. Wu, Appl. Phys. Lett., 89, 132911 (2006).
    [109] J. H. Koh and A. Grishin, Appl. Phys. Lett., 79, 2234 (2001).
    [110] C. H. Yang, J. R. Han, X. F. Cheng, X. Yin, Z. Wang, M. L. Zhao, and C. L. Wang, Appl. Phys. Lett., 87, 192901 (2005).
    [111] S. Abadei, S. Gevorgian, C. R. Cho, and A. Grishin, J. Appl. Phys., 91, 2267 (2002).
    [112] L. F. Chen, C.K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and materials Characterization, John Wiley & Sons, Ltd (2004).
    [113] B. W. Hakki and P. D. Coleman, IRE Trans. on Microwave Theory and Technique, 402 (1960).
    [114] J. Krupka, 5th International Conference on Dielectric Materials, Measurements and Applications, 322 (1988).
    [115] M. Sucher and J. Fox, Handbook of Microwave Measurements (Interscience, New York), 2 (1963).
    [116] C. Krowne, S. Kirchoefer, and J. Pond, IEEE MTT-S Int. Microwave Symp.Dig., 1193 (2000).
    [117] E. Carlsson and S. Gevorgian, IEEE Trans. Microw. Theory Tech., 47, 1544 (1999).
    [118] A. T. Findikoglu, D. W. Reagor, K. O. Rasmussen, A. R. Bishop, N. Gronbech-Jensen, Q. X. Jia, Y. Fan, C. Kwon, and L. A. Ostrovsky, J. Appl. Phys., 86, 1558 (1999).
    [119] H. T. Lue and T. Y. Tseng, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 48, 1640 (2001).
    [120] R. A. Chakalov, Z. G. Ivanov, Yu. A. Boikov, P. Larsson, E. Carlsson, S. Gevorgian, and T. Claeson, Physica C, 308, 279 (1998).
    [121] S. W. Kirchoefer, J. M. Pond, A. C. Carter, W. Chang, K. K. Agarwal, J. S. Horwitz, and D. B. Chrisey, Microw. Opt. Technol. Lett., 18, 168 (1998).
    [122] S. S. Gevorgian, T. Martinsson, P. L. J. Linner, and E. L. Kollberg, IEEE Trans. Microw. Theory Tech., 44, 896 (1996).
    [123] R. K. Hoffman, Handbook of Microwave Integrated Circuits, Norwell, MA: Artech (1987).
    [124] Z. Ma, A. J. Becker, P. Polakos, H. Huggins, J. Pastalan, H. Wu, K. Watts, Y. H. Wong, and P. Mankiewich, IEEE Trans. Electron Devices, 45, 1811 (1998).
    [125] Y. Kim, J. Oh, T. G. Kim, and B. Park, Jpn. J. Appl. Phys., 40, 4599 (2001).
    [126] J. H. Tseng and T. B. Wu, Appl. Phys. Lett., 78, 1721 (2001).
    [127] G. Shirane and S. Hoshino, Acta Crystallogr., 7, 203 (1954).
    [128] T.G. Kim, J. Oh, Y. Kim, T. Moon, K. S. Hong, and B. Park, Jpn. J. Appl. Phys., 42, 1315 (2003).
    [129] K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press Ltd, London, 1983), pp. 87–89.
    [130] S. Tappe, U. Böttger, and R. Waser, Appl. Phys. Lett., 85, 624 (2004).
    [131] W. P. Mason, Physical Acoustics and the Properties of Solids (van Nostrand, New York, 1958).
    [132] B. P. Pokharel, M. K. Datta, and D. Pandey, J. Mater. Sci., 34, 691 (1999).
    [133] P. K. Petrov, N. McN Alford, and S. Gevorgyan, Meas. Sci. Technol., 16 583(2005).
    [134] L. J. Wu, J. M. Wu, H. E. Huang, and H. Y. Bor, Appl. Phys. Lett., 90, 072901 (2007).
    [135] S. Ezhilvalavan and T. Y. Tseng, Mater. Chem. Phys., 65, 227 (2000).
    [136] T. Nitta, K. Nagase, S. Hayakawa, and Y. Iida, J. Am. Ceram. Soc., 48, 642 (1965).
    [137] Y. R. Lou and J. M. Wu, Appl. Phys. Lett., 79, 3669 (2001).
    [138] C. S. Liang, J. M. Wu, and M. C. Chang, Appl. Phys. Lett., 81, 3624 (2002).
    [139] C.S. Liang and J. M. Wu, J. Electrochem. Soc., 152 (12), F213, 2005.
    [140] A. F. Devonshire, Philos. Mag., 40, 1040 (1949).
    [141] K. M. Johnson, J. Appl. Phys., 33, 2826 (1962).
    [142] Y. Xia, C. Cai, X. Zhi, B. Pan, D. Wu, X. Meng, and Z. Liu, Appl. Phys. Lett., 88, 182909 (2006).
    [143] H. Hu and S. B. Krupanidhi, J. Mater. Res., 9, 1484 (1994).
    [144] D. Y. Wang and K. Umeya, J. Am. Ceram. Soc., 73, 1574 (1990).
    [145] J. R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987).
    [146] S. Zafar, R. E. Jones, B. Jiang, B. White, P. Chu, D. Taylor, and S. Gillespie, Appl. Phys. Lett., 73, 175 (1998).
    [147] S. Saha and S. B. Krupanidhi, J. Appl. Phys., 90, 1250 (2001).
    [148] R. Meyer, R. Liedtke, and R. Waser, Appl. Phys. Lett., 86, 112904 (2005).
    [149] A. Many and G. Rakavy, Phys. Rev., 26, 1989 (1962).
    [150] P. Zubko, J. F. Scott, M. M. Saad, P. Baxter, R. M. Bowman, and J. M. Gregg, Electrets, 2005. ISE-12. 2005 12th International Symposium on, 136 (2005).
    [151] G. A. Cox and R. H. Tredgold, Brit. J. Appl. Phys., 16, 427 (1965).
    [152] M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
    [153] G. C. Deng, G. R. Li, A. L. Ding, and Q. R. Yin, Appl. Phys. Lett., 87, 192905 (2005).
    [154] M. V. Raymond and D. M. Smyth, J. Phys. Chem. Solids, 57(10), 1507 (1996).
    [155] B. Guiffard, E. Boucher, L. Eyraud, L. Lebrun, and D. Guyomar, J. Eur. Ceram. Soc., 25, 2487 (2005).
    [156] H. Kishi, Y. Mizuno, and H. Chazono, Jpn. J. Appl. Phys., Part1 42, 1 (2003).
    [157] J. L. Wang and S. Trolier-Mckinstry, Appl. Phys. Lett., 89, 172906 (2006).
    [158] M. A. Pena and J. L. G. Fierro, Chem. Rev., 101, 1981 (2001).
    [159] K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press Ltd, London, 1983).
    [160] S. S. N. Bharadwaja, P. Victor, P. Venkateswarlu, and S. B. Krupanidhi, Phys. Rev. B, 65, 174106 (2002).
    [161] S. Steinsvik, R. Bugge, J. Gjonnes, J. Tafto, and T. Norby, J. Phys. Chem. Solids, 58, 969 (1997).
    [162] Y. Wang, K.F. Wang, C. Zhu, T.Wei, J. S. Zhu, and J. M. Liu, J. Appl. Phys., 101, 046104 (2007).
    [163] E. Vasco, O. Bohme, E. Roman, and C. Zaldo, Appl. Phys. Lett., 78, 2037 (2001).
    [164] C. A. Mead, Phys. Rev. Lett., 6, 545 (1961).
    [165] C. Zhou and D. M. Newns, J. Appl. Phys., 82, 3081 (1997).
    [166] C. Basceri, S. K. Streiffer, A. I. Kingon, and R. Waser, J. Appl. Phys., 82 2497 (1997).
    [167] M. Stengel and N. A. Spaldin, Nature (London), 443, 679 (2006).
    [168] B. Panda, A. Roy, A. Dhar, and S. K. Ray, J. Appl. Phys., 101, 064116 (2007).
    [169] C. S. Hwang, B. T. Lee, C. S. Kang, K. H. Lee, H. Cho, H. Hideki, W. D. Kim, S. I. Lee, and M. Y. Lee, J. Appl. Phys., 85, 287 (1999).
    [170] J. F. Scott, Ferroelectrics, 232, 25 (1999).
    [171] L. J. Sinnamon, M. M. Saad, R. M. Bowman, and J. M. Gregg, Appl. Phys. Lett., 81, 703 (2002).
    [172] J. F. Scott, Annu. Rev. Mater. Sci., 28, 79 (1998).
    [173] M. S. Tsai, S. C. Sun, and T. Y. Tseng, J. Appl. Phys., 82, 3482 (1997).
    [174] P. Rundqvist, T. Liljenfors, A. Vorobiev, E. Olsson, and S. Gevorgian, J. Appl. Phys., 100, 114116 (2006).
    [175] S. Yokoyama, T. Ozeki, T. Oikawa, and H. Funakubo, Integr. Ferroelectr., 59, 1429 (2003).
    [176] G. Shirane, Phys. Rev., 86, 219 (1952).
    [177] W. Leem H. Kim, and S. Yoon, J. Appl. Phys., 80, 5891 (1996).
    [178] J. J. Lee and S. B. Desu, Ferroelectr. Lett. Sect., 20, 27 (1995).
    [179] B. Chen, H. Yang, L. Zhao, J. Miao, B. Xu, X. G. Qiu, B. R. Zhao, X. Y. Qi, and X. F. Duan, Appl. Phys. Lett., 84, 583 (2004).
    [180] Y. S. Kim, J. Y. Jo, D. J. Kim, Y. J. Chang, J. H. Lee, T. W. Noh, T. K. Song, J. G. Yoon, J. S. Chung, S. I. Baik, Y. W. Kim, and C. U. Jung, Appl. Phys. Lett., 88, 072909 (2006).
    [181] M. W. Cole, P. C. Joshi, and M. H. Ervin, J. Appl. Phys., 89 6336 (2001).
    [182] N. Duan, J. E. ten Elshof, and H. Verweij, Appl. Phys. Lett., 77, 3263 (2000).
    [183] M. T. N. Pham, B. A. Boukamp, G. Rijnders, H. J. M. Bouwmeester, and D. H. A. Blank, Appl. Phys. A: Mater. Sci. Process., 79, 907 (2004).
    [184] A. Srivastava, D. Kumar, R. K. Singh, H. Venkataraman, and W. R. Eisestadt, Phys. Rev. B, 61, 7305 (2000).
    [185] K. P. Jayadevan, C. Y. Liu, and T. Y. Tseng, J. Am. Ceram. Soc., 88, 2456 (2005).
    [186] H. W. Wang, S. W. Nien, and K. C. Lee, Appl. Phys. Lett., 84, 2874 (2004).
    [187] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
    [188] S.M. Mukhopadhyay and T.C.S. Chen, J. Mater. Res., 10, 1502 (1995).
    [189] Seif A. Nasser, Appl. Surf. Sci., 157, 14 (2000).
    [190] O. Sugiyama, K. Murakami, and S. Kaneko J. Eur. Ceram. Soc., 24, 1157 (2004).
    [191] L. Ley, J. Reichardt, and R. L. Johnson, Phys. Rev. Lett., 49, 1664 (1982).
    [192] I. El-Harrad, P. Becker, C. Carabatos-Nedelec, J. Handerek, Z. Ujma, and D. Dmytrow, Vib. Spectrosc., 10, 301 (1996).
    [193] A. E. Pasto, and R. A. Condrate, J. Am. Ceram. Soc., 56, 436 (1973).
    [194] C. Chemarin, N. Rosman, T. Pagnier, and G. Lucazeau, J. Solid State Chem., 149, 298 (2000).
    [195] P. S. Dobal, A. Dixit, R. S. Katiyar, Z. Yu, R. Guo, and A. S. Bhalla, J. Appl. Phys., 89, 8085 (2001).
    [196] D. Barsani, P. P. Lottici, and X. Z. Ding, Appl Phys. Lett., 72, 73 (1998).
    [197] Y. B. Zheng, S. J. Wang, A. C. H. Huan, S. Tripathy, J. W. Chai, L. B. Kong, and C. K. Ong, J. Appl. Phys., 99, 014106 (2006).
    [198] F. M. Pontes, E. R. Leite, D. S. L. Pontes, E. Longo, E. M. S. Santos, S. Mergulhao, P. S. Pizani, F. Lanciotti, Jr., T. M. Boschi, and J. A. Varela, J. Appl. Phys., 91, 5972 (2002).
    [199] Y. Kanegae, H. Moriya, and T. Iwasaki, JSME Int. J., Ser. A, 48, 14 (2005).
    [200] A. I. Kingon, S. K. Streiffer, C. Basceri, and S. R. Summerfelt, Mater. Res. Soc. Bull., 21, 46 (1996).
    [201] Z. Yuan, Y. Lin, J. Weaver, X. Chen, C. L. Chen, G. Subramanyam, J. C. Jiang, and E. I. Meletis, Appl. Phys. Lett., 87, 152901 (2005).
    [202] K. B. Chong, L. B. Kong, L. F. Chen, L. Yan, C. Y. Tan, T. Yang, C. K. Ong, and T. Osipowicz, J. Appl. Phys. 95, 1416 (2004).
    [203] S. Hyun and K. Char, Appl. Phys. Lett., 79, 254 (2001).
    [204] C. Hubert, J. Levy, E. J. Cukauskas, and S. W. Kirchoefer, Phys. Rev. Lett., 85, 1998 (2000).
    [205] D. A. Tenne, A. Soukiassian, M. H. Zhu, A. M. Clark, X. X. Xi, H. Choosuwan, Q. He, R. Guo, and A. S. Bhalla, Phys. Rev. B, 67, 012302 (2003).
    [206] Y. D. Xia, J. B. Cheng, B. Pan, D. Wu, X. K. Meng, and Z. G. Liu, Appl. Phys. Lett., 87, 052902 (2005).
    [207] X. H. Zhu, L. P. Yong, H. F. Tian, W. Peng, J. Q. Li, and D. N. Zheng, J. Phys.:Condens. Matter, 18, 4709 (2006).
    [208] J. Sigman, P. G. Clem, and C. D. Nordquist, Appl. Phys. Lett., 89, 132909 (2006).
    [209] S. Gevorgian and P. K. Petrov, Appl. Phys. Lett., 79, 1861 (2001).
    [210] X. Liang, Z. Meng, and W. Wu, J. Am. Ceram. Soc., 87, 2218 (2004).
    [211] S. Garcia, R. Font, J. Portelles, R. J. Quinones, J. Heiras, and J. M. Siqueiros, J. Electroceram., 6, 101 (2001).
    [212] Z. G. Ban, S. P. Alpay, and J. V. Mantese, Phys. Rev. B, 67, 184104 (2003).
    [213] V. Nagarajan, C. L. Jia, H. Kohlstedt, R. Waser, I. B. Misirlioglu, S. P. Alpay, and R. Ramesh, Appl. Phys. Lett., 86, 192910 (2005).
    [214] S. P. Alpay, I. B. Misirlioglu, V. Nagarajan, and R. Ramesh, Appl. Phys. Lett., 85, 2044 (2004).
    [215] K. Khamchane, A. Vorobiev, T. Claeson, and S. Gevorgian, J. Appl. Phys., 99, 034103 (2006).
    [216] K. F. Astafiev, V. O. Sherman, A. K. Tagantsev, N. Setter, T. Kaydanova, and D. S. Ginley, Appl. Phys. Lett., 84, 2385 (2004).
    [217] S. Zhong, S. P. Alpay, M. W. Cole, E. Ngo, S. Hirsch, and J. D. Demaree, Appl. Phys. Lett. 90, 092901 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE