簡易檢索 / 詳目顯示

研究生: 陳冠廷
Chen, Guan-Ting
論文名稱: 使用相位旋轉共軛消除技術之基於離散哈特利轉換的濾波器組多載波系統
A DHT-Based Filter Bank Multicarrier System Using Phase-Rotated Conjugate Cancellation
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 鐘嘉德
Chung, Char-Dir
馮世邁
Phoong, See-May
黃昱智
Huang, Yu-Chih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 37
中文關鍵詞: 離散哈特利轉換濾波器組多載波相位旋轉共軛消除
外文關鍵詞: Discrete Hartley transform, Filter Bank Multicarrier, Phase-Rotated Conjugate Cancellation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討載波頻率偏移 (carrier frequency offset [CFO])對基於離散哈特利轉換 (discrete Hartley transform [DHT]) 之濾波器组多載波 (filter bank multicarrier [FBMC]) 系統的效能影響,並使用原先針對傳統正交分頻多工 (orthogonal frequency division multiplexing [OFDM]) 系統所提出之相位旋轉共軛消除技術 (phase-rotated conjugate cancellation [PRCC]),以克服DHT-FBMC系統的CFO問題;我們同時推導出PRCC的最佳相位旋轉角度,以最大化載波干擾比,並有效降低因CFO所造成的載波間干擾。電腦模擬結果顯示,在相同的CFO情況下,所提出之使用PRCC的DHT-FBMC系統較使用PRCC的傳統OFDM系統具有更好的位元錯誤率效能;此一效能改善隨著CFO的增大而亦趨明顯,且當正規化的CFO值等於0.3時,效能增益可達3 dB;另外,所提出之系統的效能對CFO估測誤差的反應不會太敏感,因此在實際應用中可不用頻繁地回授CFO估測值。


    In this thesis, we first investigate the effects of carrier frequency offset (CFO) on a filter bank multicarrier (FBMC) system based on the discrete Hartley transform (DHT). We then use the phase-rotated conjugate cancellation (PRCC) technique, which was originally proposed for the conventional orthogonal frequency division multiplexing (OFDM) system, for the DHT-FBMC system to overcome the CFO problem. Subsequently, the optimal phase rotation is derived for PRCC such that the carrier-to-interference ratio is maximized for the system, where the intercarrier interference due to the CFO can be reduced effectively. Computer simulation results demonstrate that the proposed DHT-FBMC scheme using PRCC achieves better bit-error-rate (BER) performance than the conventional OFDM system using PRCC under the same CFO condition. The BER improvement becomes more significant as the CFO value increases, where the performance gain is up to 3 dB when the normalized CFO is equal to 0.3. Also, the performance of the proposed scheme is not sensitive to CFO estimation errors, and the feedback of CFO estimates would not be required frequently in practical applications.

    Contents Abstract..........................................................i Contents..........................................................ii List of Figures...................................................iii List of Tables....................................................iv I. Introduction...................................................1 II. Background....................................................4 A. The DHT-FBMC System..........................................4 B. DHT-FBMC Transmission in the Presence of CFO.................10 C. OFDM Transmission Using PRCC in the Presence of CFO..........11 III. DHT-FBMC Transmission Using PRCC in the Presence of CFO......14 A. A DHT-FBMC Scheme Using PRCC.................................14 B. Data Detection for the DHT-FBMC Scheme Using PRCC............15 C. Optimal Phase Rotation for the DHT-FBMC Scheme Using PRCC....19 IV. Simulation Results............................................20 V. Conclusion.....................................................27 Appendix..........................................................28 A. Equalization of the DHT-FBMC Scheme Without Consideration of the CFO Effects.......................................................28 B. Derivation of the Optimal Phase Rotation for the DHT-FBMC Scheme Using PRCC........................................................29 References........................................................33

    [1] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwood, MA: Artech House, 2000.
    [2] Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description, 3GPP TS 36.300 V10.10.0, Jul. 2013.
    [3] 5G; NR; Multiplexing and Channel Coding; Tech. Spec., 3GPP TS 38.212 V15.2.0, Jul. 2018.
    [4] R. Haas and J.-C. Belfiore, “A time-frequency well-localized pulse for multiple carrier transmission,” Wireless Pers. Commun., vol. 5, no. 1, pp. 1–18, Jul. 1997. https://doi.org/ 10.1023/A:1008859809455.
    [5] P. Siohan and C. Roche, “Cosine-modulated filterbanks based on extended Gaussian functions,” IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3052–3061, Nov. 2000.
    [6] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
    [7] J. Du and S. Signell, “Time frequency localization of pulse shaping filters in OFDM/OQAM systems,” in Proc. Int. Conf. Inf., Commun. Signal Process., Singapore, Dec. 2007, pp. 1–5.
    [8] A. Viholaninen, M. Bellanger, and M. Huchard, “PHYDYAS–Physical layer for dynamic access and cognitive radio,” Tech. Rep. D5.1, EU FP7-ICT Future Networks, Jan. 2009. Project website: http//www.ict-phydyas.org/.
    [9] B. F. Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May 2011.
    [10] L. Zhang, P. Xiao, A. Zafar, A. Quddus, and R. Tafazolli, “FBMC system: An insight into doubly dispersive channel impact,” Trans. Veh. Technol., vol. 66, no. 5, pp. 3942–3956, May 2017.
    [11] R. Zakaria and D. Le Ruyet, “A novel filter-bank multicarrier scheme to mitigate the intrinsic interference: Application to MIMO systems,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1112–1123, Mar. 2012.
    [12] P. Chevalier, D. Le Ruyet, and R. Chauvat, “Maximum likelihood Alamouti receiver for filter bank based multicarrier transmissions,” in Proc. 20th Int. ITG Workshop Smart Antennas, Munich, Germany, Mar. 2016, pp. 210–216.
    [13] X. Mestre and D. Gregoratti, “Parallelized structures for MIMO FBMC under strong channel frequency selectivity,” IEEE Trans. Signal Process., vol. 64, no. 5, pp. 1200–1215, Mar. 2016.
    [14] F. Rottenberg, X. Mestre, F. Horlin, and J. Louveaux, “Single-tap precoders and decoders for multiuser MIMO FBMC-OQAM under strong channel frequency selectivity,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 587–600, Feb. 2017.
    [15] H. Nam, M. Choi, C. Kim, D. Hong, and S. Choi, “A new filter-bank multicarrier system for QAM signal transmission and reception,” in Proc. IEEE Int. Conf. Commun. (ICC), Sydney, Australia, Jun. 2014, pp. 5227–5232.
    [16] Y. H. Yun, C. Kim, K. Kim, Z. Ho, B. Lee, and J.-Y. Seol, “A new waveform enabling enhanced QAM-FBMC systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Stockholm, Sweden, Jun. 2015, pp. 116–120.
    [17] Z. Ho, K. Kim, C. Kim, Y. H. Yun, Y.-H. Cho, and J.-Y. Seol, “A QAM-FBMC space-time block code system with linear equalizers,” in Proc. IEEE Globecom Workshops, San Diego, CA, USA, Dec. 2015, pp. 1–5.
    [18] H. Nam, M. Choi, S. Han, C. Kim, S. Choi, and D. Hong, “A new filter-bank multicarrier system with two prototype filters for QAM symbols transmission and reception,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5998–6009, Sep. 2016.
    [19] C. Kim, Y. H. Yun, K. Kim, and J.-Y. Seol, “Introduction to QAM-FBMC: From waveform optimization to system design,” IEEE Commun. Mag., vol. 54, no. 11, pp. 66–73, Nov. 2016.
    [20] D. Sim and C. Lee, “A MIMO receiver with two-dimensional ordering for maximum likelihood detection in FBMC-QAM,” IEEE Trans. Commun. Lett., vol. 21, no. 7, pp. 1465–1468, Jul. 2017.
    [21] R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., vol. 73, no. 12, pp. 1832–1835, Dec. 1983.
    [22] H.-S. Pan, “A filter bank multicarrier system based on the discrete Hartley transform and two prototype filters,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2017.
    [23] K.-C. Yang, “Time and frequency synchronization for a DHT-based filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.
    [24] C.-L. Wang, H.-S. Pan, and C.-T. Tuan, “Filter bank multicarrier transmission based on the discrete Hartley transform,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Seoul, South Korea, May 2020, pp. 1–7.
    [25] C.-L. Wang and H.-S. Pan, Filter Bank Multicarrier Communication System Based on Discrete Hartley Transform, US Patent, US 10735238 B1, Aug. 2020.
    [26] C.-L. Wang and H.-S. Pan, Filter Bank Multicarrier Communication System Based on Discrete Hartley Transform, ROC Patent, I 703842, Sept. 2020.
    [27] C.-L. Wang and H.-S. Pan, Receiver of Filter Bank Multicarrier Communication System Based on Discrete Hartley Transform, US Patent, US 10819549 B2, Oct. 2020.
    [28] C.-L. Wang and I-C. Chiu, “A DHT-based filter bank multicarrier system using space-time block coding,” in Proc. 14th Int. Conf. Signal Process. Commun. Syst. (ICSPCS), Adelaide, Australia, Dec. 2020, pp. 1–7.
    [29] J. Mao, C.-L. Wang, L. Zhang, C. He, P. Xiao, and K. Nikitopoulos, “A DHT-based multicarrier modulation system with pairwise ML detection,” in Proc. 28th IEEE Int. Symp. Pers., Indoor, Mobile, Radio Commun. (PIMRC), Montreal, QC, Canada, Oct. 2017, pp. 1–6.
    [30] J. Ahn and H. S. Lee, “Frequency domain equalization of OFDM signal over frequency nonselective Rayleigh fading channels,” Electron. Lett., vol. 29, no. 16, pp. 1476–1477, Aug. 1993.
    [31] C. Muschallik, “Improving an OFDM reception using an adaptive Nyquist windowing,” IEEE Trans. Consum. Electron., vol. 42, no. 3, pp. 259–269, Aug. 1996.
    [32] J.-J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process., vol. 45, no. 7, pp. 1800–1805, Jul. 1997.
    [33] P. K. Remvik, N. Holte and A. Vahlin, “Fading and carrier frequency offset robustness for different pulse shaping filters in OFDM, ” in Proc. IEEE 48th Veh. Technol. Conf. (VTC), Ottawa, ON, Canada, May 1998, pp. 777–781.
    [34] Y. Zhao and S.-G. Haggmann, “Intercerrier interference self-cancellation scheme for OFDM mobile communication systems,” IEEE Trans. Comm., vol. 49, pp. 1185–1191, Jul. 2001.
    [35] A. Sayedi and G. J. Saulnier, “General ICI self-cancellation scheme for OFDM systems,” IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 198–210, Jan. 2005.
    [36] O. Real and V. Almenar, “OFDM ICI self-cancellation scheme based on five weights,” in Proc. IEEE Int. Conf. Wireless Mobile Comput., Netw. Commun., Avignon, France, Oct. 2008, pp. 360–364.
    [37] H.-G. Yeh and Y. K. Chang, “A conjugate operation for mitigating inter-carrier interference of OFDM systems,” in Proc. IEEE 60th Veh. Technol. Conf. (VTC-Fall), Los Angeles, CA, USA, Sep. 2004, pp. 3965–3969.
    [38] H.-G. Yeh, Y. K. Chang, and B. Hassibi, “A scheme for canceling intercarrier interference through conjugate transmission for multicarrier communication systems,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 3–7, Jan. 2007.
    [39] C.-L. Wang and Y.-C. Huang, “Intercarrier interference cancellation using general phase rotated conjugate transmission for OFDM systems,” IEEE Trans. Commun., vol. 58, no. 3, pp. 812–819, Mar. 2010.
    [40] C.-L. Wang, P.-C. Shen, Y.-C. Lin, and J.-H. Huang, “An adaptive receiver design for OFDM systems using conjugate transmission,” IEEE Trans. Commun, vol. 61, no. 2, pp. 599–608, Feb. 2013.
    [41] D. Sim and C. Lee, “Performance evaluation based on effective channel analysis for FBMC-QAM system with two prototype filters,” IEEE Trans. Commun, vol. 67, no. 5, pp. 3552–3565, Jan. 2019.
    [42] S. Sesia, I. Toufik, and M. Baker, LTE-The UMTS Long Term Evolution: From Theory to Practice, 2nd ed. UK: John Wiley & Sons, 2011.
    [43] W. Chung, B. Kim, M. Choi, H. Nam, H. Yu, S. Choi, and D. Hong, “Synchronization error in QAM-based FBMC system,” in Proc. IEEE Military Commun. Conf. (MILCOM), Baltimore, MD, USA, Oct. 2014, pp. 699–705.

    無法下載圖示 全文公開日期 2023/10/27 (校內網路)
    全文公開日期 2026/10/26 (校外網路)

    QR CODE