簡易檢索 / 詳目顯示

研究生: 陳怡惠
論文名稱: 高指向性小尺寸頻率選擇平面共振式天線之研究
Compact High Directivity Planar Resonator Antenna Based on Frequency Selective Surfaces
指導教授: 柳克強
口試委員: 柳克強
林諭男
巫勇賢
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 113
中文關鍵詞: 頻率選擇平面
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於現今商業上有越來越多高頻段微波的應用,如汽車防撞雷達(Collision Avoidance Radar)、衛星通訊網路、短距點對點通訊等,而這些應用中有個共同的需求-高指向性(High-Directivity)天線。而為了因應現今無線通訊都朝小型、輕量、薄型、低功率與高性能的趨勢來發展,因此要設計出兼具以上特點的高指向性天線是有其困難度與必需性的。本文第一項重點是設計以微帶天線饋入的單頻率選擇平面共振式天線(共振腔1/2波長高),為了解決天線覆板面積縮小時,會有旁波瓣位準(sidelobe level)過大的問題,在共振腔的四周圍平面上,分別加上一對完美電牆與一對完美磁牆,並以四分之波長轉換器結合完美導體來實現完美磁牆,由模擬結果成功使得面積約為2 × 2 λ02 (其中λ0為波長) 的平面共振式天線之旁波瓣位準低於-25 dB,指向性大於13 dB,並且進行實做和量測。量測結果指向性為12.22 dB,E plane和H plane的旁波瓣位準分別-24.62 dB與-20.72 dB。本研究第二項重點是雙頻率選擇平面共振式天線(共振腔λ0/4高),相同的在共振腔的四周圍平面上,分別加上一對完美電牆與一對完美磁牆,但改以人工磁導體 (artificial magnetic conductor,AMC) 結合完美電牆來實現完美磁牆。模擬計算成功使得面積約為2 × 2 λ02 (其中λ0為波長)的平面共振式天線之旁波瓣位準低於-25 dB,指向性大於13 dB,如此一來可使整體的體積變得更小,也更有利於和其它產品整合。


    章節目錄 摘要 I 致謝 V 章節目錄 VI 圖表目錄 IX 第一章 前言                       1 1.1 研究背景                      1  1.2 研究目的                      3  第二章 文獻回顧 7 2.1 一維介電質電磁晶體共振式天線 8  2.2 二維介電質電磁晶體共振式天線  10  2.3 三維介電質電磁晶體共振式天線 12  2.4 頻率選擇平面共振式天線 14 2.5 小面積之平面共振式天線 19  2.6 降低共振腔高度之平面共振式天線 23 2.7 各種平面共振式天線之比較 29 第三章 基本原理 32 3.1 微帶天線原理 32 3.2 兩介質間多重反射                 36 3.3 無反射實驗室量測 38 第四章 平面共振式天線模擬模型 40 4.1 週期性邊界條件                  40 4.1.1 Bloch Theory 40 4.1.2 邊界條件 41 4.2 穿透率與共振頻率 44 4.2.1 穿透率之模擬方法 44 4.2.2 共振頻率之計算 45 4.3 BMM反射相位模擬方法               46 第五章 研究構思 49 第六章 初步模擬結果 56 6.1 SFSS PRA (共振腔λ0/2高) 56 6.1.1 SFSS各參數對頻率響應之影響 56 6.1.2 SFSS PRA (共振腔λ0/2高) 62 6.1.3 微帶天線饋入之SFSS PRA實驗結果 71 6.2 DFSS PRA (共振腔高度λ0/4) 80 6.2.1 DFSS PRA之共振頻率 80 6.2.2 DFSS PRA_ W/O wall 84 6.2.3 DFSS PRA _PEC-PMC 89 6.2.4 AMC (artificial magnetic conductor) 91 6.2.5 PEC-AMC 96 第七章 結論 101 附錄A 實驗量測結果 104 附錄B 描述天線效能之參數 107 附錄C AMC設計 108 參考文獻 111

    參考文獻

    [1] J. Wenger and IEEE, "Automotive radar - status and perspectives," in 2005 IEEE Csic Symposium, Technical Digest, ed New York: IEEE, pp. 21-24,2005.
    [2] F. Kolak and C. Eswarappa, "A low profile 77 GHz three beam antenna for automotive radar," 2001 IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 1107-1110, 2001.
    [3] N. Shino, et al., "77 GHz band antenna array substrate for short range car radar," 2005 IEEE MTT-S International Microwave Symposium Digest, 2005.
    [4] J. Valldorf and W. Gessner, "Advaced microsystems for automotive applications 2003," Springer Berlin Heidelberg,Inc., 2003.
    [5] T. Binzer, et al., "Development of 77 GHz radar lens antennas for automotive applications based on given requirements," Antennas,2007.INICA'07.2nd International ITG Conference on, 2007.
    [6] T. K. Wu and W. P. Shillue, "Dichroic design for the orbiting vlbi earth station antenna," IEE Proceedings-Microwaves Antennas and Propagation, vol. 141, pp. 181-184, Jun 1994.
    [7] W. L. Stutzman. and G. A. Thiele, Antenna Theory and Design, 2 ed.: John Wiley & Sons,Inc., 1998.
    [8] 江忠信, 頻率選擇平面應用於平面共振式之研究: 國立清華大學工程與系統科學研究所碩士論文, 2007.
    [9] Ansoft HFSS 輔助說明.
    [10] C. Kittel, Introduction to Solid State Physics, 8 ed.: John Wiley & Sons,Inc., 2004.
    [11] A. R. Weily, et al., "High-gain 1D EBG resonator antenna," Microwave and Optical Technology Letters, vol. 47, pp. 107-114, Oct 2005.
    [12] L. Leger, et al., "Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna," Ieee Microwave and Wireless Components Letters, vol. 15, pp. 573-575, Sep 2005.
    [13] C. Cheype, et al., "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, vol. 50, pp. 1285-1290, Sep 2002.
    [14] A. R. Weily, et al., "A planar resonator antenna based on a woodpile EBG material," IEEE Transactions on Antennas and Propagation, vol. 53, pp. 216-223, Jan 2005.
    [15] Y. J. Lee, et al., "Design of a high-directivity electromagnetic band gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate," Microwave and Optical Technology Letters, vol. 43, pp. 462-467, Dec 2004.
    [16] O. Ronciere, et al., "Radiation performance of purely metallic waveguide-fed compact Fabry-Perot antennas for space applications," Microwave and Optical Technology Letters, vol. 49, pp. 2216-2221, Sep 2007.
    [17] S. Wang, et al., "High-gain subwavelength resonant cavity antennas based on metamaterial ground planes," IEE Proceedings-Microwaves Antennas and Propagation, vol. 153, pp. 1-6, Feb 2006.
    [18] Y. H. Ge and K. P. Esselle, "Low-profile resonant cavity antenna based on an in-phase metamaterial surface," Microwave and Optical Technology Letters, vol. 51, pp. 731-739, Mar 2009.
    [19] G. Zhao, et al., "Design of high-gain low-profile resonant cavity antenna using metamaterial superstrate," Microwave and Optical Technology Letters, vol. 52, pp. 1855-1858, Aug 2010.
    [20] G. V. TRENTINIT, "Partially reflecting sheet arrays," IRE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1956.
    [21] T. K. Wu, Frequency selective surface and grid array John Wiley & Sons,Inc., 1995.
    [22] Y. J. Lee, et al., "A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement," Microwave and Optical Technology Letters, vol. 42, pp. 25-31, Jul 2004.
    [23] B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE Transactions on Antennas and Propagation, vol. 53, pp. 745-752, Feb 2005.
    [24] A. Foroozesh and L. Shafai, "Investigation into the effects of the patch-type fss superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, vol. 58, pp. 258-270, Feb 2010.
    [25] 鄧聖明,蔡慶龍,柏小松,天線設計與應用,鼎茂出版社,2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE