簡易檢索 / 詳目顯示

研究生: 郭家豪
Chia-Hao Kuo
論文名稱: 藉由峰度最大化於同步空時編碼-多載波-分碼多工接取系統之盲蔽空時解碼演算法
Blind Space-time Decoding Algorithms by Kurtosis Maximization for Synchronous STC-MC-CDMA Systems
指導教授: 祁忠勇
Chong-Yung Chi
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 32
中文關鍵詞: 盲蔽空時解碼多載波分碼多工接取系統空時編碼盲蔽空時解碼演算法
外文關鍵詞: blind, space time decoding, multi-carrier, CDMA, space-time coding, BSTD
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 未來的無線通訊系統必需要提供非常快速的傳輸速率以提供愈來愈多的語音及多媒體需求,直接序列分碼多工接取系統(Direct Sequence Code Division Multiple Access, DS-CDMA)目前已被採用為第三代行動通訊系統並且相較於其他傳統多工接取系統而言,直接序列分碼多工接取系統可提供更高的容量。在無線通訊中,使用多根傳送天線的空時編碼已被證明具有高效率之傳送分集技術。然而,在接收端對於這些技術之傳統的空時方塊解碼演算法(例如:最大比值合併(Maximum Ratio Combining, MRC)及最小均方誤差(Minimum Mean Square Error, MMSE)必須知道通道狀態資訊(可經由導引信號(pilot signals)估得)以執行空時解碼。近來,對於多載波-分碼多工接取(Multi-carrier Code Division Multiple Access, MC-CDMA)系統而言,基於盲蔽子空間(Subspace)之通道估測演算法(不需要事先傳送導引信號)也被提出,在接收端提供通道狀態資訊以執行空時解碼。本篇論文中,我們提出兩種在接收端不需要知道通道狀態資訊之盲蔽空時解碼(Blind Space-time Decoding, BSTD)演算法(演算法1及演算法2),用於多根傳送天線及接收天線之同步空時編碼-多載波-分碼多工接取(Space-time Coded Multi-carrier Code Division Multiple Access, STC-MC-CDMA)系統。我們提出的演算法1(或演算法2)本身是疊代式演算法並具有與快速峰度最大化演算法(Fast Kurtosis Maximization Algorithm, FKMA)相同的超指數(super-exponential)收斂速率之優點。緊接著,我們藉由一些模擬結果來證實所提出的演算法之效能並於最後做一些結論。


    Space-time coding schemes using multiple transmit antennas have proven efficient for transmit diversity in wireless communications. However, these schemes require channel state information (estimated through pilot signals) for the conventional space-time block decoding algorithms (such as maximum ratio combining (MRC) and minimum mean square error (MMSE)) at the receiver. Recently, blind subspace based channel estimation algorithms (without need of pilot signals) were also considered to provide the channel state information for space-time block decoding of a multicarrier CDMA (MC-CDMA) system at the receiver. In this thesis, two blind space-time de-coding (BSTD) algorithms (algorithm 1 and algorithm 2), which do not require
    channel state information for space-time decoding at the receiver, are proposed for the synchronous MC-CDMA system with multiple transmit and receive antennas used. The proposed algorithm 1 (or algorithm 2) is an iterative algorithm using Chi and Chen computationally efficient fast kurtosis maximization algorithm with su-per-exponential convergence rate. Some simulation results are presented to support the efficacy of the proposed BSTD algorithms. Finally, some conclusions are drawn.

    中文摘要 Ⅰ ABSTRACT Ⅲ 誌謝 Ⅴ CONTENTS Ⅵ 1. INTRODUCTION 1 2. DISCRETE-TIME SIGNAL MODEL 3 A. The Transmitter 4 B. The Receiver 5 3. MRC AND MMSE METHODS 7 A. Maximum Ratio Combining 7 B. Minimum Mean Square Error 9 4. THE PROPOSED BSTD ALGORITHMS 11 A. Kurtosis Maximization 11 B. FKMA 12 C. Initial Condition for v 13 D. Summary of the Proposed BSTD Algorithm 1 14 E. Inverse of STC and BMRC Algorithm 17 F. Summary of the Proposed BSTD Algorithm 2 17 5. MULTIPLE RECEIVE ANTENNAS 18 6. SIMULATION RESULTS 19 7. CONCLUTION 28 APPENDIX A Proof of Theorem 1 29 References 31

    [1] N. Yee, J. P. Linnartz, and G. Fettweis, “BER of multi-carrier CDMA in an indoor Rician fading channel,” Proc. IEEE International Conference on Signals, Systems and Computers, vol. 1, Pacific Grove, CA, Nov. 1-3, 1993, pp. 426-430.

    [2] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Communications Mag., vol. 35, pp. 126-133, Dec. 1997.

    [3] T. M. Lok and T. F. Wong, “Transmitter and receiver optimization in multicarrier CDMA systems,” IEEE Trans. Communications, vol. 48, pp. 1197-1207, July 2000.

    [4] B. Smida, C.L. Despins, and G. Y. Delisle, “MC-CDMA performance evaluation over a multipath fading channel using the characteristic function method,” IEEE Trans. Communications, vol. 49, pp. 1325-1328, Aug. 2001.

    [5] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.

    [6] A. Wittneben, “Basestation modulation diversity for digital SIMULCAST,” Proc. IEEE Vechicular Technology Conference, St. Louis, USA, May 19-22, 1991, pp. 848-853.

    [7] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: performance criterion and code construction,” IEEE Trans. Information Theory, vol. 44, pp. 744-764, Mar. 1998.

    [8] S.M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 16, pp. 1451-1458, Oct. 1998.

    [9] W. Sun, H. Li, and M. Amin, “MMSE detection for space-time coded MC-CDMA,” Proc. IEEE International Conference on Communications, vol. 5, Anchorage, AK, USA, May 11-15,
    2003, pp. 3452-3456.

    [10] C.-Y. Chi, C.-H. Peng, and H.-I Su, “Blind multiuser detection for quasi-synchronous modified MC-CDMA systems by kurtosis maximization,” Proc. IEEE Workshop on Sensor Array
    and Multichannel Signal Processing, Barcelona, Spain, July 18-21, 2004.

    [11] C.-Y. Chi and C.-Y. Chen, “Blind beamforming and maximum ratio combining by kurtosis maximization for source separation in multipath,” Proc. IEEEWorkshop on Signal Processing Advances in Wireless Communications, Taoyuan, Taiwan, Mar. 20-23, 2001, pp. 243-246.

    [12] C.-Y. Chi, C.-Y. Chen, C.-H. Chen, and C.-C. Feng, “Batch processing algorithms for blind equalization using higher-order statistics,” IEEE Signal Processing Mag., vol. 20, pp. 25-49, Jan. 2003.

    [13] Z. Ding and T. Nguyen, “Stationary points of a kurtosis maximization algorithm for blind signal separation and antenna beamforming,” IEEE Trans. Signal Processing, vol. 48, pp. 1587-1596, June 2000.

    [14] Z. Ding, “A new algorithm for automatic beamforming,” Proc. 25th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 4-6, 1991, pp. 689-693.

    [15] O. Shalvi and E. Weinstein, “Super-exponential methods for blind deconvolution,” IEEE Trans. Information Theory, vol. 39, pp. 504-519, Mar. 1993.

    [16] K. Yang, T. Ohira, Y. Zhang, and C.-Y. Chi, “Super-exponential blind adaptive beamforming,” IEEE Trans. Signal Processing, vol. 52, pp. 1549-1563, June 2004.

    [17] C.-Y. Chi, C.-Y. Chen, C.-H. Chen, C.-C. Feng, and C.-H. Peng, “Blind identification of SIMO systems and simultaneous estimation of multiple time delays from HOS-based inverse filter criteria,” IEEE Trans. Signal Processing, vol. 52, pp. 2749-2761, Oct. 2004.

    [18] J. Proakis, Digital Communications. New York: McGraw-Hill, 2001.

    [19] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications. New York: Cambridge University Press, 2003.

    [20] J. K. Tugnait, “Identification and deconvolution of multichannel linear non-Gaussian processes using higher order statistics and inverse filter criteria,” IEEE Trans. Signal Processing, vol. 45, pp. 658-672, Mar. 1997.

    [21] C.-Y. Chi and C.-H. Chen, “Cumulant based inverse filter criteria for MIMO blind deconvolution: properties, algorithms, and application to DS/CDMA systems in multipath,” IEEE Trans. Signal Processing, vol. 49, pp. 1282-1299, July 2001.

    [22] C.-Y. Chi, C.-H. Chen, and C.-Y. Chen, “Blind MAI and ISI suppression for DS/CDMA systems using HOS-based inverse filter criteria,” IEEE Trans. Signal Processing, vol. 50, pp. 1368-1381, June 2002.

    [23] C. Joseph and Jr. Liberti, Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. New Jersey: Prentice-Hall, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE