研究生: |
李秉榤 Li,Bing Jie |
---|---|
論文名稱: |
利用氨水同時捕獲二氧化碳及二氧化硫之模擬研究 The simulation study of using ammonia absorbent to capture carbon dioxide and sulfur dioxide simultaneously. |
指導教授: |
鄭西顯
Jang,Shi Shang |
口試委員: |
汪上曉
Wong,Shan Hill 王聖潔 Wang,San Jang 錢義隆 Chien,I lung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 質傳速率模型 、氨洩漏 、二氧化碳捕獲 、氨排放 、二氧化硫排放 、硫酸銨 |
外文關鍵詞: | rate-based model, ammonia slip, carbon dioxide capture, ammonia emissions, sulfur dioxide emissions, ammonia sulfate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質傳速率模型已成為填充塔捕獲二氧化碳模擬時一個嚴謹的模組,本研究第一部份則是氨水捕獲二氧化碳之程序進行質傳速率建模,以吸收塔及汽提塔來模擬氨水捕獲二氧化碳的製程,可以發現氨水的進料溫度對於氨氣於吸收塔洩漏的量有明顯的影響。
第二部份則探討於氨水捕獲二氧化碳的製程中加入氨水循環的製程來降低吸收塔所排放出來的NH3,並於吸收塔的上端加入水洗塔,且於Mumorah Power station所排出的flue gas 後端加上前置處理塔(pretreatment column)來洗去廢氣中所含的雜質(SOx,NOx…等),藉由在吸收塔的上端加入水洗塔後可以發現,水洗塔的出口端對於氨氣洩漏的量已控制在1.49~33ppm左右,而水洗氨溶液則藉由水洗塔塔底流至前置處理塔進行氨氣再生以及去除廢氣中雜質,二氧化硫的去除率可高達99.9%,對於氨氣回收使用率可達99.68%,並可將再生的氨氣用於吸收塔捕獲二氧化碳的製程中,藉由此NH3循環系統與CO2捕獲系統的結合可以降低氨洩漏的問題;此外若提高SO2進料濃度時,反而有利於降低氨氣的排放量,因為SO2溶於吸收劑中降低了溶液的pH值,而有助於鹼性氨氣的吸收,因此降低了氨氣出口濃度,而對二氧化碳捕獲系統能耗影響甚小;當提高氨水再生系統循環量時,同樣也有利於降低氨氣的排放量,但對較大的循環量其冷卻和加熱能耗相對有所提升,對二氧化碳捕獲系統能耗則影響不大。
第三個部分,則是探討前處理塔後端所排放出來的廢液(含亞硫酸氫銨),藉由分支流將液體中所含有硫的雜質來和臭氧進行反應,其轉化率可達90%以上,並產生高附加價值的硫酸銨。
The rate-based model has been a rigorous model to capture carbon dioxide in packed column,so rate-based model for NH3-CO2-SO2-H2O system was developed.
Using absorber and stripper to simulate the process of ammonia to capture carbon dioxide and we found that ammonia-water temperature has an effect on ammonia slip .
The second part explores ammonia to capture carbon dioxide in the process of adding NH3 recycle unit to reduce NH3 emissions out of the absorber, and add washing column to the upper of the absorber. Flue gas discharged from Mumorah Power station passing by the pretreatment column to wash away the impurities contained in flue gas such as SOx, NOx ... etc.We combine the pretreatment column and wash column and find that ammonia slip has been controlled at 1.49~33ppm.
Ammonia-water can be heated by flue gas latent heat to regenerate NH3 for recycling,thus saving significant amounts of energy.The proposed process has SO2 removal ratio >99.9% and NH3 reuse efficiencies of 99.68%.
Besides,the process is strongly adaptable to different scenarios such as high SO2 level in flue gas and high ammonia-water recycle rate . The high SO2 level is beneficial for reducing NH3 emissions, because the acid gas SO2 dissolve into the solution ,decreasing the pH value and facilitating the absorption of alkaline NH3 gas.But has a little effect on the CO2 capture unit energy comsuptions.The high ammonia-water recycle rate is also beneficial for reducing NH3 emissions,but it will increase the ammonia recovery unit chilling duty and heat duty.It’s also a little effect on the CO2 capture unit energy comsuptions.
The third part is to investigate the branch liquid sulfur impurities split from ammonia recovery unit .Because ammonia react with sulfur dioxide producing ammonium bisulfite and ammonium sulfite (NH4HSO3/(NH4)2SO3) which is unstable and low added value.In order to produce high added value ,we add the ozone oxidation process into the system to produce ammonia sulfate((NH4)2SO4).
1. G.T. Rochelle, Amine scrubbing for CO2 capture. Science, 2009. 325(5948): p. 1652-1654.
2. IEA, Key World Energy Statistics : IEA., 2012.
3. M. Wang,A. Lawai, Post-combustion CO 2 capture with chemical absorption: a state-of-the-art review. Chemical Engineering Research and Design, 2011. 89(9): p. 1609-1624.
4. H. Kikkawa, T. Nakamot.,M. Morishita, K. Yamada, New wet FGD process using granular limestone. Industrial & Engineering Chemistry Research, 2002. 41(12): p. 3028-3036.
5. R.K. Srivastava , Controlling SO2 Emissions--a Review of Technologies. 2000: United States Environmental Protection Agency, Office of Research and Development Washington, DC.
6. G. Busca, C. Pistarino, Abatement of ammonia and amines from waste gases: a summary. Journal of Loss Prevention in the Process Industries, 2003. 16(2): p. 157-163.
7. K. Han, Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. International Journal of Greenhouse Gas Control, 2013. 14: p. 270-281.
8. M. Caplow, Kinetics of carbamate formation and breakdown. Journal of the American Chemical Society, 1968. 90(24): p. 6795-6803.
9. P. Danckwerts, The reaction of CO2 with ethanolamines. Chemical Engineering Science, 1979. 34(4): p. 443-446.
10. P. Blauwhoff, G. Versteeg, and W. Van Swaaij, A study on the reaction between CO 2 and alkanolamines in aqueous solutions. Chemical Engineering Science, 1984. 39(2): p. 207-225.
11. E. B. Rinker, S. A. Sami, and O. C. Sandall, Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine. Chemical Engineering Science, 1995. 50(5): p. 755-768.
12. T. L. Donaldson and Y. N. Nguyen, Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Industrial & Engineering Chemistry Fundamentals, 1980. 19(3): p. 260-266.
13. V. Darde , K. Thomsen., Chilled ammonia process for CO2 capture. International Journal of Greenhouse Gas Control, 2010. 4(2): p. 131-136.
14. P. M. Mathias, S. Reddy and J.P. O’Connell, Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation. International Journal of Greenhouse Gas Control, 2010. 4(2): p. 174-179.
15. H. Yu, S. Morgan, A. Allport, A. Conttrell, T. Do, J. McGregor, L. Wardhaugh, and P. Feron, Results from trialling aqueous NH 3 based post-combustion capture in a pilot plant at Munmorah power station: Absorption. Chemical Engineering Research and Design, 2011. 89(8): p. 1204-1215.
16. C.R. McLarnon, and J.L. Duncan, Testing of ammonia based CO2 capture with multi-pollutant control technology. Energy Procedia, 2009. 1(1): p. 1027-1034.
17. R. Dong, H. Lu, Y. Yu, Z. Zhang, A feasible process for simultaneous removal of CO 2, SO 2 and NOx in the cement industry by NH3 scrubbing. Applied Energy, 2012. 97: p. 185-191.
18. K. Li, , H. Yu, P. Feron, M. Tade., Rate-based modelling of combined SO2 removal and NH 3 recycling integrated with an aqueous NH3-based CO2 capture process. Applied Energy, 2015. 148: p. 66-77.
19. Y. Rongjie, Study on ozone oxidation of ammonium sulfite in aqueous solutions. presented at the International Conference on Sustainable Energy and Environmental Engineering, China, 2015.
20. X. L. Long, , W. Li, and W. K. Yuan, Novel homogeneous catalyst system for the oxidation of concentrated ammonium sulfite. Journal of Hazardous Materials, 2006. 129(1): p. 260-265.
21. Z. Niu,Y. Guo, Q. Zeng ,and W. Lin, Experimental studies and rate-based process simulations of CO2 absorption with aqueous ammonia solutions. Industrial & Engineering Chemistry Research, 2012. 51(14): p. 5309-5319.
22. S. L. Clegg, S. S. Ho, C.K. Chen ,and P. Brimblecombe, Thermodynamic properties of aqueous (NH4) 2SO4 to high supersaturation as a function of temperature. Journal of Chemical and Engineering Data, 1995. 40(5): p. 1079-1090.
23. R. E. Erickson, L. M. Yates, R. L. Clark, D. Mcewen, The reaction of sulfur dioxide with ozone in water and its possible atmospheric significance. Atmospheric Environment , 1977. 11(9): p. 813-817.
24. B. Pinsent, L. Pearson, and F. Roughton, The kinetics of combination of carbon dioxide with ammonia. Transactions of the Faraday Society, 1956. 52: p. 1594-1598.
25. J. L. Liu,H. C. Gao, C. C Peng and David S.H. Wong , S. S. Jang and J. F. Shen, Aspen Plus rate-based modeling for reconciling laboratory scale and pilot scale CO 2 absorption using aqueous ammonia. International Journal of Greenhouse Gas Control, 2015. 34: p. 117-128.
26. R. Taylor, and R. Krishna, Modelling reactive distillation. Chemical Engineering Science, 2000. 55(22): p. 5183-5229.
27. R. Krishna, and G. Standart, A multicomponent film model incorporating a general matrix method of solution to the Maxwell‐Stefan equations. AIChE Journal, 1976. 22(2): p. 383-389.
28. R. Billet, and M. Schultes, Predicting mass transfer in packed columns. Chemical engineering & technology, 1993. 16(1): p. 1-9.
29. T. H. Chilton, and A. P. Colburn, Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction. Industrial & engineering chemistry, 1934. 26(11): p. 1183-1187.
30. S. Freguia, and G. T. Rochelle, Modeling of CO2 capture by aqueous monoethanolamine. AIChE Journal, 2003. 49(7): p. 1676-1686.
31. Y. Zhang, H. Chen,C.C. Chen,J.M. Plaza,R. Dugas and G.T.Rochells, Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Industrial & engineering chemistry research, 2009. 48(20): p. 9233-9246.
32. 高涵綺, 利用煤化學工廠自產氨水捕獲二氧化碳之應用. 清華大學化學工程學系學位論文, 2014: p. 1-74.
33. N. Dave, T. Do, and D. Palfreyman, Assessing Post-Combustion Capture for Coal Fired Power Stations in APP Countries, 2008, CSIRO internal report ET/IR–1083.
34. D. G. Chapel, , C. L. Mariz, and J. Ernest. Recovery of CO2 from flue gases: commercial trends. in Canadian Society of Chemical Engineers Annual Meeting. 1999.
35. R. Rajagopaul, N. Mbongwa, and C. Nadan, Guidelines for the selection and effective use of ozone in water treatment. 2008: Water Research Commission.