簡易檢索 / 詳目顯示

研究生: 王俊儼
Wang, Chun-Yen
論文名稱: 應用於健康照護系統之減小動作干擾脈動式血氧飽和濃度計
Motion Artifacts Reduction in Pulse Oximeter for Health Care System
指導教授: 鄭桂忠
Tang, Kea-Tiong
口試委員: 方偉騏
謝志成
鄭桂忠
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 92
中文關鍵詞: 脈動式血氧飽和濃度計轉導電容濾波器減低動作干擾
外文關鍵詞: Pulse oximeter, Transconductance-C Filter, Motion Artifacts Reduction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在目前的醫療儀器上來看,生理監測系統著重於診所或醫學中心內的病患生理監測,監測生理資訊需於特定的地點進行,生理監測儀器也有昂貴且不易攜帶的缺點。由於現代人生活發展快速且忙碌,居家穿戴且可攜式的病患監測系統也受到重視。穿戴式病患監測系統可應用於居家健康照顧,移動照護,身心障礙照護及個人生理數據監測等,主要應用於非急性病患的健康狀況追蹤及預防,以減少不必要的後續治療成本浪費,是預防勝於治療的觀念。
    血氧飽和濃度計是使用光學元件來達到非侵入式的血氧飽和濃度監測儀器。依據微型化及無線傳輸的目的,需發展小型且可攜式的健康照護系統,因此需研究出連續性的健康照護監測及病人緊急預防裝置。由於發展此監測系統的需求,感測介面電路需減小面積及易於攜帶,且須減小光體積變化波形的干擾。最大的干擾來源來自於身體的動作干擾,因此減小動作干擾是非常重要的發展技術。
    在本篇論文中,介紹了可攜式的感測介面電路及減小動作干擾之計算方法,感測器的部分使用綁帶式的方式來量測光體積變化波形。為了達到可攜式的目的,轉阻放大器、發光二極體驅動電路、類比開關、濾波電路這些量測元件被整合在一張印刷電路板。此外並把低通濾波器、帶通濾波器及帶拒濾波器以轉導電容濾波器的方式,使用TSMC 0.18μm的製程進行微型化。最後,本研究有別於傳統的660nm與870nm兩種波長外,另增加800nm的波長並產生參考訊號以修正人為動作干擾的問題;並且針對目前傳統兩波長脈動式血氧量測方法做改進;在減低人為動作干擾雜訊的部分,則使用正規化最小均方法來做適應性濾波器的演算法,並使用主動式雜訊消除的概念來做減低動作干擾的實作。


    A pulse oximeter is a noninvasive oxyhemoglobin saturation monitoring instrument with optical components. When developing miniaturization and wireless communication technologies, small sized portable health care system are demanded. Therefore, continuous health care monitoring and precaution device for emergency are required for the patient. To develop the device on these demands, the sensing interface circuit is requested to minimize for protable reason and the photoplethysmographic to be reduce noise. The major source of noise is body motion, for this reason, motion artifact reduction is the key technique to develop.
    In this paper, a portable sensing interface circuit and a motion artifact reduction method was proposed. The device had a shape of the finger band, which measured the photoplethysmographic on the finger. For the purpose of a portable device, components of the transimpedance ampligier, LED driver, analog multiplexer, and filters, were integrated into a printed circuit board. Moreover, the transconductance-C filter of low-pass filter, band-pass filter, and notch filter, were integrated into a chip using TSMC 0.18μm technology. Finally, this research presents a motion artifact reduction method with correction of optical calculation and active noise cancellation method with a reference signal to reduce signal distortion by body motion.

    摘要 i Abstract ii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 序論 1 1.1 前言 1 1.2 研究目的與動機 2 1.3 論文架構 2 第二章 非侵入式血氧飽和濃度量測原理 4 2.1 生理訊號的種類及規格 4 2.2 光體積變化波形形成原理 4 2.3 血氧飽和濃度作用原理 6 2.4 血氧飽和濃度定義 8 2.5 比爾藍伯特定律 8 2.6 兩波長血氧飽和濃度光吸收比例值推導 9 2.7 兩波長血氧飽和濃度計算方法 11 第三章 非侵入式血氧飽和度感測系統 14 3.1 系統方塊圖 14 3.2 設計規格 15 3.3 離散電路雛型 15 3.3.1 血氧感測器 15 3.3.2 發光二極體驅動電路 17 3.3.3 轉阻放大器 18 3.3.4 類比切換開關 19 3.3.5 濾波電路 19 3.4 測試結果 21 第四章 轉導電容濾波器 29 4.1 電感電容梯形濾波器 31 4.2 元件替換 33 4.3 運算轉導放大器 37 4.4 電路佈局圖 43 4.5 模擬結果 44 第五章 晶片量測環境與測試 47 5.1 量測環境考量 47 5.1.1 電源調節電路 48 5.1.2 印刷電路測試板 49 5.2 量測結果 50 第六章 減低動作干擾之設計與實現 60 6.1 主動式雜訊消除 60 6.2適應性演算法 61 6.3 血氧飽和度實驗及計算結果 64 6.4 程式實作結果 84 第七章 結論與未來工作 87 參考文獻 88

    [1]張慈映, 工業局智慧型醫療電子產業技術推廣與輔導計畫-遠距健康照護市場.
    [2] G. Zonios, “Pulse Oximetry Theory and Calibration for Low Saturations,” IEEE Trans. Biomed. Eng., vol. 51, pp. 818-823, 2004.
    [3] F. M. Coetzee, “Noise-Resistant Pulse Oximetry Using a Synthetic Reference Signal,” IEEE Trans. Biomed. Eng., vol. 47, pp. 1018-1026,2000.
    [4] P. D. Mannheimer, “Wavelength Selection for Low-saturation Pulse Oximetry,” IEEE Trans. Biomed. Eng., vol. 44, pp. 148-158, 1997.
    [5] A. R. Relente, L.G. Sison, “Characterization and Adaptive Filtering of Motion Artifacts in Pulse Oximetry Using Accelerometers”, Proceedings of 2002 IEEE EMBS Conference, pp. 1769-1770, 2002.
    [6] PF Stetson, “Independent component analysis of pulse oximetry signals”, Proceedings of the 2004 IEEE EMBS Conference , pp. 1-5,2004.
    [7] M. R. Neuman and N.Wang, “Motion artifact in pulse oximetry,” in Proc.IEEE Conf. Med. Biol., vol. 12, pp. 2007–2008,1990.
    [8] K. W. Chan and Y. T. Zhang, “Adaptive reduction of motion artifact from photoplethysmographic recordings using a variable step-size LMS filter,” in Proc. IEEE Sensors, vol. 2, pp. 1343–1346,2002.
    [9] J. Lee, W. Jung, I. Kang, Y. Kim, and G. Lee, “Design of filter to reject motion artifact of pulse oximetry,” Comput. Stand. Interfaces, vol. 26, no. 3, pp. 241–249, 2004.
    [10] C. M. Lee and Y. T. Zhang, “Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach,” in Proc. IEEE EMBS Asian-Pacific Conf. Biomed. Eng., pp. 194–195,2003.
    [11] J. Y. A. Foo, “Use of independent component analysis to reduce motion artifact in pulse transit time measurement,” IEEE Signal Process. Lett., vol. 15, pp. 124–126, 2008.
    [12] S. Kunchon, T. Desudchit . “Comparative Evaluation of Adaptive Filters in Motion Artifact Cancellation for Pulse Oximetry,” International Colloquium on Signal Processing & Its Applications, pp. 307-311,2009.
    [13] M. Raghu Ram, K. Venu Madhav. “Adaptive reduction of motion artifacts from PPG signals using a synthetic noise reference signal,” IEEE EMBS Conference on Biomedical Engineering & Sciences, pp. 315-319,2010.
    [14] M Raghuram, K. Venu Madhav. “Evaluation of Wavelets for Reduction of Motion Artifacts in Photoplethysmographic Signals, ” International Conference on Information Science, Signal Processing and their Applications, pp. 460-463,2010.
    [15] I. Fine and A.Weinreb, “Multiple scattering effect in transmission pulse oximetry,” Med. Biol. Eng. Comput., vol. 33, no. 5, pp. 709–712, 1995.
    [16] M. J. Hayes and P. R. Smith, “Artifact reduction in photoplethysmography,” Appl. Opt., vol. 37, no. 31, pp. 7437–7446, 1998.
    [17] W. J. Tompkins, “Biomedical Digital Signal Processing,” Prentice-Hall International, 1993.
    [18] Micromedical, “Pulse Contour Analysis & Theory ,” http://www.micromedical.co.uk/.
    [19] Hand-Anatomy,http://northspokanept.com.
    [20] E. A. Villegas, “LED power reduction trade-offs forambulatory pulse oximetry,” Proc. 29th Annual IEEE EMBS conf., pp. 2296 – 2299,2007.
    [21] Y. Mendelson, “Pulse oximetry: theory and applications for noninvasive monitoring,” Clin Chem , pp. 1601-1607,1992.
    [22] J. L. Lin. “Applications of biological features for medical diagnostic problems-taking oxyhemoglobin and fingerprints as examples,” Taiwan: National Sun Yat-sen University,2008.
    [23] T.L. Rusch, J.E. Scharf, R. Sankar, “Alternate pulse oximetry algorithms for SpO2 computation,” Proc. IEEE Engineering in Medicine and Biology Society Conference , pp. 848–849.,1994.
    [24] A.A.R. Kamal1, J. H. “Skin photoplethysmography-a review,” Computer Methods and Programs in Biomedicine , pp. 257-269,1989.
    [25] Masimo, Signal Extraction Technology, http://www.masimo.com.
    [26] Nellcor. Clinical Resources. http://www.nellcor.com/.
    [27] Peripheral Arterial Disease is Underdiagnosed in the Elderly http://www.jeffreymlevinemd.com/.
    [28] Swedlow, D.B., “Oximeter with motion detection for alarm modification,” International Patent Application WO94/22360, October 1994.
    [29] CircuitsFinder-Free Electronic Circuit Diagram Design. http://www.circuitsfinder.com/.
    [30] W.K. Cheng, “The Circuits and Filters Handbook,” CRC Press.1995.
    1, pp.20-32, March 1985.
    [31] R Schaumann, M Van Valkenburg, “ Design of analog filters,”OXFORD, 2003.
    [32] I. S. Uzunov, “ Theoretical Model of Ungrounded Inductance Realized With Two Gyrators,” IEEE TRANS. Circuit and systems—II , vol. 55, no. 10. 2008.
    [33] R. L. Geiger and E. Sánchez-Sinencio, “Active Filter Design Using Operational Transconductance Amplifiers: A Tutorial, ” IEEE Circuits and Devices Magazine, vol. 1, pp.20-32,2003.
    [34] P. Garde, “Transconductance cancellation for operational amplifiers,” IEEE J.Solid-State Circuits, vol. 12, pp.310-311, June 1997.
    [35] J. S. Martinez and J. S. Suner, “IC voltage-to-current transducers with very-small transconductance,” Analog Integrated Circuits Signal Proc., vol. 13, pp.285-293,1997.
    [36] C. G. Yu and R. L. Geiger, “Very low voltage operational amplifier using floating-gate MOSFETs,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’93), vol. 2, pp.1152-1155.1993.
    [37] E. Rodriguez-Villegas, A. Yufera, and A. Rueda ,” A 1.25-V Micropower Gm-C Filter Based on FGMOS Transistors Operating in Weak Inversion, ” IEEE J. Solid-State Circuits, vol. 29, no. 1, pp. 100–111, 2004.
    [38] R. Fried and C. Enz, “Bulk-driven MOST transconductor with extended linear range,” Electron. Lett., vol. 32, pp.638-640, 1996.
    [39] A. Guzinski, M. Bialko and J. C. Matheau, “Body-dirven differential amplifier for application in continuous-time active-C filter,” in Proc. IEEE Eur. Conf. Circuit Theory and Design (ECCTD’87), pp.315-319,1987.
    [40] S. Koziel and S. Szczepanski, “Design of Highly Linear Tunable CMOS OTA for Continuous-Time Filters,” IEEE Trans. Circuits Syst. II, vol. 49,pp.110-122, Feb. 2002.
    [41] S. Sinencio and J. S. Martinez, “CMOS transconductance amplifiers, architecture and active filters: a tutorial,” IEE Proc. Circuits Devices Syst. pp. 3-12, vol. 147, 2000.
    [42] S. S. Bustos, J. S. Martinez, F. Maloberti and E. S. Sinencio, “A 60-dB Dynamic-Range CMOS Sixth-Order 2.4Hz Low-Pass Filter for Medical Application,” IEEE Trans. Circuits Syst. II, vol. 47, pp.1391-1398, Dec. 2000.
    [43] Sen. M. Kuo and D. Morgan, Active Noise Control. Wiley, 1996.
    [44] B. Widrow, J. Glover, JR., John McCool, John Kaunitz, Charles Williams, Robert Hearn, James Zeidler, Eugene Dong, JR., and Robert Goodlin, “Adaptive Noise Cancelling: Principles and Applications,” Proceedings of the IEEE, vol.63, No.12 ,1975.
    [45] S. Haykin, “Adaptive Filter Theory,”4th Edition, Prentice Hall.
    [46] G. Maurice, “Adaptive Digital Filters (Signal Processing and Communications),”2nd Edition, Baker & Taylor Books.
    [47] 宋俊杰,王哲,金海龍,王超,三波長低血氧測量系統的研究與實現,激光與紅外,vol 40(1),pp 62-65,2010.
    [48] T. Aoyagi, M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka, “Multiwavelength pulse oximetry: theory for the future,” Anesth. Analg, pp. 53–58 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE