簡易檢索 / 詳目顯示

研究生: 謝禎安
論文名稱: 以機率方法來進行邏輯等效驗證之研究
Probabilistic Approach for Logic Equivalence Checking
指導教授: 王俊堯
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 41
中文關鍵詞: 機率等效驗證
外文關鍵詞: Probabilistic, Verification, Equivalence
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 邏輯等效驗證在超大型積體電路設計的流程中,扮演十分重要的角色。近年來有論文指出驗證所花費的時間在整個電路設計中約佔百分之六十至百分之八十的比例。因此,一個有效率的演算法是必須的。因此,利用機率方法來驗證邏輯等效被提出。過去的方法是將要驗證的電路轉換成機率表示式,再比較此表示式是否相等即可。近來,將機率表示式中的符號替換成實數可以得出此電路輸出端的機率,並且證明此替換之方式,其驗證之結果不會產生失真。但是當電路的輸入端的數目過大時,這種替換變數的方式將需要極大的計算量及記憶體使用量。因此,我們提出了一個方式,是利用電路中的內部等價閘,來減少變數取代的使用量。而實驗的數據也指出我們的方法在實際的電路是可行的。


    Logic equivalence checking plays an important role in VLSI design flow. Recently, the effort of logic equivalence checking occupies 60%~80% effort of the whole design flow. Hence, an efficient algorithm for logic equivalence checking is needed and probabilistic verification is proposed. Probability expressions of circuits are built and compared. Recently, replacing primary inputs into real numbers is used. In [8], a perfect input assignment for probabilistic verification is proposed and this approach does not cause aliasing. But this input assignment approach needs plenty of calculation and memory usage while the input number is huge. Hence, we propose an advanced approach to reduce the usage of input assignments. We check internal equivalent gates of circuits and replace them with a single assignment. Experimental results show that our approach is workable in practical circuits.

    1 Introduction 2 Preliminaries and definitions 3 Our approach 3.1 Reduce the number of input assignments 3.1.1 When and where to assign values? 3.1.2 Reduce the number of input assignment by internal equivalent gate 3.1.3 Applying assignments as less as possible 3.1.4 RAR technique improves reduction 3.2 Calculation complexity issue 3.3 Overall algorithm 3.4 An example 4 Experimental results 5 Conclusions and future work References

    [1] V. D. Agrawal and S. Seth, “Mutually Disjoint Signals and Probability Calculation in Digital Circuits,” in Proc. the Great Lakes Symposium on VLSI, pp. 307-312, 1998.
    [2] R. E. Bryant, “Graph-based Algorithm for Boolean Function Manipulation,” IEEE Transaction on Computer-Aided Design, C-35:667-691, August 1986.
    [3] M. Blum, A. Chandra, and M. Wegman, “Equivalence of Free Boolean Graphs Can be Decided Probabilistically in Polynomial Time,” Information Processing Letters, 10:80-82, March 1980.
    [4] S. C. Chang, L. P. P. P Van Ginneken, and M. Marek-Sadowska, “Fast Boolean Optimization by Rewiring,” in Proc. IEEE Int. Conf. Computer-Aided Design, pp. 262-269, 1996.
    [5] J. Jain, J. Bitner, D. S. Fussel, and J. A. Abraham, “Probabilistic Design Verification,” in Proc. IEEE Int. Computer-Aided Design, pp. 468-471, 1991.
    [6] S. K. Kumar and M. A. Breuer, “Probabilistic Aspects of Boolean Switching Functions via a New Transform,” Journal of the Association for Computing Machinery, Vol 28, No 3, pp. 502-520, July 1981.
    [7] H. B. Min and E. S. Park, “Graph-theoretic Algorithm for Finding Maximal Supergates in Combinational Logic Circuits,” in Proc. IEE. Circuits, Devices and Systems, Vol. 143, No. 6, December 1996.
    [8] K. P. Parker and E. J. McCluskey, “Probabilistic Treatment of General Combinational Networks,” IEEE Transaction Comput., pp. 668-670, 1975.
    [9] M. Teslenko, E. Dubrova, and H. Tenhunen, “Computing a Perfect Input Assignment for Probabilistic Verification,” in Proc. SPIE, VLSI Circuits and Systems II, Vol. 5837, pp. 929-936, June 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE