簡易檢索 / 詳目顯示

研究生: 林坤南
Lin, Kun Nan
論文名稱: 單氣泡聲致發光之音牆模型分析
Shock-wave theory for single-bubble sonoluminescence
指導教授: 洪在明
Hong, Tzay Ming
口試委員: 羅志偉
Luo, Chih Wei
施宙聰
Shy, Jow Tsong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 33
中文關鍵詞: 單氣泡聲致發光震波
外文關鍵詞: sonoluminescence, shock wave
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了瞭解單氣泡聲致發光實驗的發光機制,光譜的量測是一個重點;藉由它,可以知道發光區域小於氣泡大小,然而實驗仍然無法直接量到最高溫度。目前理論對於最高溫的預測尚有待商確,也無法清楚預測發光區域的大小。我們依據震波理論,分析震波的行進,最後藉由考慮凡德瓦力的作用和能量守恆,定性上以較直覺的方式,初步解決了這兩個難題。


    To understand the light emission mechanism in single-bubble sonoluminescence experiment, the spectra are a key source of information. They already reveal that the light emission region is smaller than the bubble size. Theorists have been trying hard to predict the highest temperature and the size of light emission region. This is the main goal of my thesis work. According to the shock-wave theory, we analyzed the propagation of the shock wave. Then we take into account the van der Waals force and energy conservation to both analytically and numerically elucidate how the light emission region and its temperature distribution evolve. In the end, we are able to obtain the highest temperature intuitively and qualitatively. 

    目錄 1.緒論 5 1.1 單氣泡聲致發光簡介..........................................................5 1.1.1聲致發光實驗概況....................................................5 1.2 氣泡的運動方程式..............................................................6 1.3 週期內氣泡的運動特徵......................................................9 1.4 氣泡內部.............................................................................11 1.5 震波(shock-wave)理論........................................................13 1.6 研究動機與目的.................................................................14 1.7 發光機制.............................................................................14 1.7.1黑體輻射....................................................................14 1.7.2韌致輻射....................................................................15 2.研究方法 17 2.1 震波的音牆模型.................................................................17 2.1.1第一階段....................................................................17 2.1.2第二階段....................................................................19 2.1.3第三階段....................................................................24

    References

    [1] D. F. Gaitan, L. A. Crum, C. C. Church, and R. A. Roy, The Journal of the Acoustical Society of America 91, 3166 (1992).
    [2] M. P. Brenner, S. Hilgenfeldt, and D. Lohse, Rev. Mod. Phys. 74, 425 (2002).
    [3] X. Lu, A. Prosperetti, R. Toegel, and D. Lohse, Phys. Rev. E 67, 056310 (2003).
    [4] S. J. Putterman, Scientific American 272, 46 (1995).
    [5] L. D. Landau, and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford 1987).
    [6] B. P. Barber, R. Hiller, K. Arisaka, H. Fetterman, and S.
    Putterman, J. Acoust. Soc. Am. 91, 3061(1992).
    [7] C. C. Wu, and P. H. Roberts, Phys. Rev. Lett. 70, 3424(1993).
    [8] V. Q. Vuong, and A. J. Szeri, Phys. Fluids 8, 2354(1996).
    [9] W. C. Moss, D. A. Young, J. A. Harte, J. L. Levatin, B. F. Rozsnyai, G. B. Zimmerman and I. H. Zimmerman, Phys. Rev. E 59, 2986(1999).
    [10] B. D. Storey, and A. J. Szeri, Proc. R. Soc. London, Ser. A 456, 1685(2000).
    [11] K. P. Stanyukovich, Unsteady Motion of Continuous Mdeia. Gostekhizdat(Moscow, 1955); English transl., M. Holt, ed., (Academic Press, New York, 1960).
    [12] G. Starke Guderley, Luftfahrtforschung 19, 302 (1942).
    [13] J. S. Dam and M. T. Levinsen, Phys. Rev. Lett. 92, 144301 (2004).
    [14] S. Hilgenfeldt, S. Grossmann, and D. Lohse, Nature (London) 398, 402(1999).
    [15] S. Hilgenfeldt, S. Grossmann, and D. Lohse, Phys. Fluids 11 ,1318(1999).
    [16] D. Hammer, and L. Frommhold, J. Mod. Opt. 48, 239(2001).
    [17] D. J. Flannigan and K. S. Suslick, Phys. Rev. Lett. 95, 044301 (2005).
    [18] Zel’dovich and Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. 2vols.
    [19] Ashley G. Smart, Physics Today 65, 18 (2012).
    [20]Landau and Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE