研究生: |
林坤南 Lin, Kun Nan |
---|---|
論文名稱: |
單氣泡聲致發光之音牆模型分析 Shock-wave theory for single-bubble sonoluminescence |
指導教授: |
洪在明
Hong, Tzay Ming |
口試委員: |
羅志偉
Luo, Chih Wei 施宙聰 Shy, Jow Tsong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 33 |
中文關鍵詞: | 單氣泡聲致發光 、震波 |
外文關鍵詞: | sonoluminescence, shock wave |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了瞭解單氣泡聲致發光實驗的發光機制,光譜的量測是一個重點;藉由它,可以知道發光區域小於氣泡大小,然而實驗仍然無法直接量到最高溫度。目前理論對於最高溫的預測尚有待商確,也無法清楚預測發光區域的大小。我們依據震波理論,分析震波的行進,最後藉由考慮凡德瓦力的作用和能量守恆,定性上以較直覺的方式,初步解決了這兩個難題。
To understand the light emission mechanism in single-bubble sonoluminescence experiment, the spectra are a key source of information. They already reveal that the light emission region is smaller than the bubble size. Theorists have been trying hard to predict the highest temperature and the size of light emission region. This is the main goal of my thesis work. According to the shock-wave theory, we analyzed the propagation of the shock wave. Then we take into account the van der Waals force and energy conservation to both analytically and numerically elucidate how the light emission region and its temperature distribution evolve. In the end, we are able to obtain the highest temperature intuitively and qualitatively.
References
[1] D. F. Gaitan, L. A. Crum, C. C. Church, and R. A. Roy, The Journal of the Acoustical Society of America 91, 3166 (1992).
[2] M. P. Brenner, S. Hilgenfeldt, and D. Lohse, Rev. Mod. Phys. 74, 425 (2002).
[3] X. Lu, A. Prosperetti, R. Toegel, and D. Lohse, Phys. Rev. E 67, 056310 (2003).
[4] S. J. Putterman, Scientific American 272, 46 (1995).
[5] L. D. Landau, and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford 1987).
[6] B. P. Barber, R. Hiller, K. Arisaka, H. Fetterman, and S.
Putterman, J. Acoust. Soc. Am. 91, 3061(1992).
[7] C. C. Wu, and P. H. Roberts, Phys. Rev. Lett. 70, 3424(1993).
[8] V. Q. Vuong, and A. J. Szeri, Phys. Fluids 8, 2354(1996).
[9] W. C. Moss, D. A. Young, J. A. Harte, J. L. Levatin, B. F. Rozsnyai, G. B. Zimmerman and I. H. Zimmerman, Phys. Rev. E 59, 2986(1999).
[10] B. D. Storey, and A. J. Szeri, Proc. R. Soc. London, Ser. A 456, 1685(2000).
[11] K. P. Stanyukovich, Unsteady Motion of Continuous Mdeia. Gostekhizdat(Moscow, 1955); English transl., M. Holt, ed., (Academic Press, New York, 1960).
[12] G. Starke Guderley, Luftfahrtforschung 19, 302 (1942).
[13] J. S. Dam and M. T. Levinsen, Phys. Rev. Lett. 92, 144301 (2004).
[14] S. Hilgenfeldt, S. Grossmann, and D. Lohse, Nature (London) 398, 402(1999).
[15] S. Hilgenfeldt, S. Grossmann, and D. Lohse, Phys. Fluids 11 ,1318(1999).
[16] D. Hammer, and L. Frommhold, J. Mod. Opt. 48, 239(2001).
[17] D. J. Flannigan and K. S. Suslick, Phys. Rev. Lett. 95, 044301 (2005).
[18] Zel’dovich and Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. 2vols.
[19] Ashley G. Smart, Physics Today 65, 18 (2012).
[20]Landau and Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6.