簡易檢索 / 詳目顯示

研究生: 費遠婷
論文名稱: 中溫固態燃料電池電解質之電性與熱穩定性分析
Thermal Stability and Electrical Conductivity of Electrolyte Materials for IT-SOFC
指導教授: 簡朝和
口試委員: 簡朝和
林樹均
吳振名
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 33
中文關鍵詞: 中溫固態氧化物燃料電池BaCeO3導電度化學穩定性
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了改善BaCe0.8-xZrxDy0.2O3-δ材料系統的熱穩定性,本研究以化學法合成SrCe0.8-xZrxDy0.2O3-δ (x=0.1-0.4) 和BaCe0.5M0.3Dy0.2O3-δ (M = Ti, Sn, Hf, Zr),分析其成分對導電率與熱穩定性的影響。實驗結果發現導電度與晶格常數和結構對稱性成正相關;熱穩定性則隨著結構對稱性和摻雜離子的電負度 (Electronegativity) 增加而提高,且不同成分的相對穩定性與熱力學估算的趨勢接近。BaCe0.5Sn0.3Dy0.2O3-δ在本實驗的所有成分中對二氧化碳和水具有最佳的熱穩定性,兼具不錯的導電度。進一步探討其缺陷化學,發現導電度與氧分壓的1/4次方有線性關係,與實驗結果相符。由離子與電洞遷移數得知,BaCe0.5Sn0.3Dy0.2O3-δ在低氧分壓下為純離子導體,在高氧分壓下則為離子與電洞的混合導體,有潛力做為IT-SOFC的陽極、電解質和陰極材料。


    目錄……………………………………………………………………I 圖目錄…………………………………………………………………III 表目錄…………………………………………………………………VII 1. 前言…………………………………………………………………1 2. 實驗方法……………………………………………………………5 2.1 起始原料…………………………………………………………5 2.2 粉體合成…………………………………………………………5 2.2.1 合成SrCe0.8-xZrxDy0.2O3-δ (x=0.1-0.4) 粉末………………5 2.2.2 合成BaCe0.5M0.3Dy0.2O3-δ , M = Ti, Zr, Sn, Ce, Hf 粉末…6 2.3 試片製作…………………………………………………………7 2.4 基本性質測試……………………………………………………8 2.4.1 熱重熱差分析………………………………………………8 2.4.2 X-ray繞射分析……………………………………………8 2.4.3 顯微結構觀察………………………………………………8 2.5 導電率量測………………………………………………………8 2.6 熱穩定性測試……………………………………………………9 2.6.1 對二氧化碳之穩定性………………………………………9 2.6.2 對水之穩定性……………………………………………10 3. 結果與討論…………………………………………………………11 3.1 SrCe0.8-xZrxDy0.2O3-δ與BaCe0.8-xZrxDy0.2O3-δ (x=0.1-0.4)……11 3.1.1 導電率………………………………………………………11 3.1.2 對二氧化碳之熱穩定性……………………………………13 3.2 BaCe0.5M0.3Dy0.2O3-δ , M = Ti, Zr, Sn, Ce, Hf…………………15 3.2.1 導電率………………………………………………………16 3.2.2 對二氧化碳之熱穩定性……………………………………17 3.2.3 對水之熱穩定性……………………………………………19 3.2.4 BaCe0.5Sn0.3Dy0.2O3-δ之導電機制…………………………21 4. 結論………………………………………………………………24 5. 參考文獻……………………………………………………………26

    [1] N. Q. Minh, “Ceramic Fuel-Cells,” J. Am. Ceram. Soc., 76, 563-88 (1993).
    [2] T. H. Etsell and S. N. Flengas, “Electrical Properties of Solid Oxide Electrolytes,” Chem. Rev., 70, 339-76 (1970).
    [3] J. W. Fergus, “Electrolytes for Solid Oxide Fuel Cells,” J. Power Sources, 162, 30-40 (2006).
    [4] S. M. Haile, “Fuel Cell Materials and Components,” Acta Mater., 51, 5981-6000 (2003).
    [5] E. Fabbri, D. Pergolesi, and E. Traversa, “Materials Challenges toward Proton-Conducting Oxide Fuel Cells: a Critical Review,” Chem. Soc. Rev., 39, 4355-69 (2010).
    [6] K. D. Kreuer, “Proton-Conducting Oxides,” Annu. Rev. Mater. Res., 33, 333-59 (2003).
    [7] H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, “Proton Conduction in Sintered Oxides based on BaCeO3,” J. Electrochem. Soc., 135, 529-33 (1988).
    [8] A. S. Nowick, and Y. Du, “High-Temperature Protonic Conductors with Perovskite-Related Structures,” Solid State Ionics, 77, 137-46 (1995).
    [9] N. Bonanos, “Transport Properties and Conduction Mechanism in High-Temperature Protonic Conductors,” Solid State Ionics, 53, 967-74 (1992).
    [10] L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, and M. Liu, “Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ,” Science, 326, 126-9 (2009).
    [11] S. Hamakawa, T. Hibino, and H. Iwahara, “Prospect of Hydrogen Technology Using Proton-Conducting Ceramics,” Solid State Ionics, 168, 299-301 (2004).
    [12] N. Bonanos, K. S. Knight, and B. Ellis, “Perovskite Solid Electrolytes: Structure, Transport Properties and Fuel Cell Applications,” Solid State Ionics, 79, 161-70 (1995).
    [13] N. Bonanos, “ Oxide-Based Protonic Conductors: Point Defects and Transport Properties,” Solid State Ionics, 145, 265-74 (2001).
    [14] 潘昭璇,〈有機化學合成法製備中溫固態燃料電池陽極材料及其電性分析〉,國立清華大學材料科學工程學系100年碩士論文
    [15] M. J. Scholten, J. Schoonman, J. C. Vanmiltenburg, H. A. J. Oonk, “ Synthesis of Strontium and Barium Cerate and Their Reaction with Carbon Dioxide,” Solid State Ionics, 61, 83-91 (1993).
    [16] S. Gopalan and A. V. Virkar, “Thermodynamic Stabilities of SrCeO3 and BaCeO3 Using a Molten Salt Method and Galvanic Cells,” J. Electrochem. Soc., 140, 1060-65 (1993).
    [17] C. W. Tanner and A. V. Virkar, “Instability of BaCeO3 in H2O-Containing Atmospheres,” J. Electrochem. Soc., 143, 1386-9 (1996).
    [18] F. L. Chen, O. T. Sorensen, G. Y. Meng, and D. K. Peng, “Chemical Stability Study of BaCe0.9Nd0.1O3−α High-Temperature Proton- Conducting Ceramic,” J. Mater. Chem., 7, 481-5 (1997).
    [19] K. H. Ryu and S. M. Haile, “Chemical Stability and Proton Conductivity of Doped BaCeO3-BaZrO3 Solid Solutions,” Solid State Ionics, 125, 355-67 (1999).
    [20] S. V. Bhide and A. V. Virkar, “Stability of BaCeO3-Based Proton Conductors in Water-Containing Atmospheres,” J. Electrochem. Soc., 146, 2038-44 (1999).
    [21] N. Zakowsky, S. Williamson, and J. T. S. Irvine, “Elaboration of CO2 Tolerance Limits of BaCe0.9Y0.1O3−δ Electrolytes for Fuel Cells and Other Applications,” Solid State Ionics, 176, 3019-26, (2005).
    [22] A. Tomita, K. Tsunekawa, T. Hibino, S. Teranishi, Y. Tachi, and M. Sano, “Chemical and Redox Stabilities of a Solid Oxide Fuel Cell with BaCe0.8Y0.2O3−α Functioning as an Electrolyte and as an Anode,” Solid State Ionics, 177, 2951-6, (2006).
    [23] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic Conduction in Zr-Substituted BaCeO3,” Solid State Ionics, 138, 91-8 (2000).
    [24] S. M. Haile, G. Staneff, and K. H. Ryu, “Non-Stoichiometry, Grain Boundary Transport and Chemical Stability of Proton Conducting Perovskites,” J. Mater. Sci., 36, 1149-60 (2001).
    [25] Z. Zhong, “Stability and Conductivity Study of the BaCe0.9−xZrx- Y0.1O2.95 Systems,” Solid State Ionics, 178, 213-20 (2007).
    [26] S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalo, S. Boldrini, L. Malavasi, and R. Gerbasi, “High Conductivity and Chemical Stability of BaCe1−x−yZrxYyO3−δ Proton Conductors Prepared by a Sol-Gel Method,” J. Mater. Chem., 18, 5120-8 (2008).
    [27] E. Fabbri, A. D. Epifanio, E. D. Bartolomeo, S. Licoccia, and E. Traversa, “Tailoring the Chemical Stability of Ba(Ce0.8−xZrx)Y0.2O3−δ Protonic Conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs),” Solid State Ionics, 179, 558-64 (2008).
    [28] C. S. Tu, R. R. Chien, V. H. Schmidt, S. C. Lee, C. C. Huang, and C. L. Tsai, “Thermal Stability of BaZr0.8−xCexY0.2O2.9 Ceramics in Carbon Dioxide,” J. Appl. Phys., 105, 103504-1-7 (2009).
    [29] P. Sawant, S. Varma, B. N. Wani, and S. R. Bharadwaj, “Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as Electrolyte for Proton Conducting SOFC,” Int. J. Hydrogen Energ., 37, 3848-56 (2012).
    [30] T. Matzke and M. Cappadonia, “Proton Conductive Perovskite Solid Solutions with Enhanced Mechanical Stability,” Solid State Ionics, 86, 659-63, (1996).
    [31] N. Osman, I. Abu Talib, and H. A. Hamid, “Heat Treatment and Characterization of Yb Doped Barium Cerate Prepared via Sol-Gel Method,” Sains Malays., 38, 103-7, (2009).
    [32] E. Fabbri, T. Oh, S. Licoccia, E. Traversa, and E. D. Wachsman, “A Mixed Protonic/Electronic Conductor Cathodes for Intermediate Temperature SOFCs Based on Proton Conducting Electrolytes,” J. Electrochem. Soc., 156, B38-45 (2009).
    [33] I. Kosacki and H. L. Tuller, “Mixed Conductivity in SrCe0.95Y0.05O3 Protonic Conductors, ” Solid State Ionics, 80, 223-9 (1995).
    [34] K. D. Kreuer, W. Munch, M. Ise, T. He, A. Fuchs, U. Traub, and J. Maier, “Defect Interactions in Proton Conducting Perovskite-type Oxides,” Ber. Bunsenges. Phys. Chem., 101, 1344-50, (1997).
    [35] L. Bi, Z. Tao, C. Liu, W. Sun, H. Wang, and W. Liu, “Fabrication and Characterization of Easily Sintered and Stable Anode-Supported Proton-Conducting Membranes,” J. Membrane Sci., 336, 1-6, (2009).
    [36] Y. M. Chiang, D. P. Birnie, and W. D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, chap. 3, pp. 221-2, John Wiley & Sons., USA, 1997.
    [37] A. F. Sammells, R. L. Cook, J. H. White, J. J. Osborne, and R. C. MacDuff, “Rational Selection of Advanced Solid Electrolytes for Intermediate Temperature Fuel Cells,” Solid State Ionics, 52, 111-23, (1992).
    [38] J. Richter, P. Holtappels, T. Graule, T. Nakamura, and L. J. Gauckler, “Materials Design for Perovskite SOFC Cathodes,” Monatsh. Chem., 140, 985-99, (2009).
    [39] H. Yokokawa, “Thermodynamic Stability of Perovskites and Related Compounds in Some Alkaline Earth-Transition Metal-Oxygen Systems,” J. Solid State Chem., 94, 106-20 (1991).
    [40] T. Matsui, “Thermodynamic Properties of Ternary Barium Oxides,” Thermochim. Acta, 253, 155-65 (1995).
    [41] E. Takayama-Muromachi and A. Navrotsky, “Energetics of Compounds (A2+ B4+ O3) with the Perovskite Structure,” J. Solid State Chem., 142, 244-56 (1988).
    [42] M. Mogensen, D. Lybye, N. Bonanos, P. V. Hendriksen, and F. W. Poulsen, “Factors Controlling the Oxide Ion Conductivity of Fluorite and Perovskite Structured Oxides,” Solid State Ionics, 174, 279-86 (2004).
    [43] I. Barin, Thermochemical Data of Pure Substances, chap. 12, pp. 133-1880, VCH, Weinheim, 1995.
    [44] R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst., A32, 751-67 (1976).
    [45] L. Pauling, The Nature of the Chemical Bond, chap. 3, pp. 88-95, Cornell University, New York, 1960.
    [46] K. Li and D. Xue, “Estimation of Electronegativity Values of Elements in Different Valence States,” J. Phys. Chem. A, 110, 11332-7 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE