簡易檢索 / 詳目顯示

研究生: 鄭雅云
Chang,Ya-Yun
論文名稱: 利用薄膜模板成長氮化鈦及二氧化鋯薄膜之研究
Growth of TiN and ZrO2 Thin Films Using Thin Film Templates
指導教授: 黃嘉宏
Huang,Jia-Hong
喻冀平
Yu,Ge-Ping
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 90
中文關鍵詞: 模板氮化鈦二氧化鋯
外文關鍵詞: template, titanium nitride, zirconium dioxide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次研究發展出一種兩步驟方式利用模板來控制氮化鈦與二氧化鋯薄膜的成長,進而探討模板效應對於薄膜性質與結構之影響。本實驗可分為兩個部分,第一部份為利用不同優選方向之氮化鈦或鈦模板成長氮化鈦薄膜,第二部分則是在高純度氬氣中(99.99%),用熱處理方式氧化具有不同優選方向氮化鋯薄膜以製備二氧化鋯薄膜;為研究鍍膜製程之影響,使用三種不同鍍膜儀器製備具有(111)優選方向的氮化鋯薄膜試片。藉由X光繞射能譜圖(XRD)的觀察可以發現,使用(200)優選方向的氮化鈦做為模板,可使上層氮化鈦薄膜之優選方向從原來的(111)轉變為(200);至於使用具有(111)優選方向氮化鈦薄膜以及優選方向為(0002)純鈦薄膜做為模板,則有助於上層氮化鈦薄膜之優選方向由(200)轉變為(111)。實驗結果顯示,模板對氮化鈦織構成長的效應較改變製程參數有效。至於熱處理過後的氮化鋯試片,可發現正方晶與單斜晶之二氧化鋯同時出現在薄膜內部,其中高氮鋯比試片產生以正方晶二氧化鋯為主要結晶相,然而在低氮鋯比試片中,主要結晶相為單斜晶二氧化鋯。原本氮化鋯之優選方向對於二氧化鋯的成長影響並不顯著,主要結晶相均為單斜晶之二氧化鋯。在熱處理過後的氮化鋯試片表面發現有空泡產生,本研究使用半定量分析來檢視空泡的生成原因,發現空泡生成之驅動力主要是來自氮化鋯與單斜晶二氧化鋯間體積膨脹所產生的壓應力。


    This study developed a two-step method to control the growth of TiN and ZrO2 thin films using thin film templates and explored the effects of template on the structure and properties of the derivative thin films. The experiment was divided into two parts. The first part was to deposit TiN on TiN(111), TiN(200) and Ti(0002) templates. In the second part, ZrO2 thin films were grown by oxidizing ZrN thin films with different preferred orientations in Ar (99.99% purity) atmosphere, where ZrN (111) thin films were prepared by three deposition systems for examining the effect of different deposition methods. The texture of the top TiN thin films revealed by X-ray diffraction (XRD) changed from (111) to (200) as TiN(200) template was used. In the cases of using Ti(0002) or TiN(111) templates, the texture of the derivative TiN thin films switched from (200) to (111). The results indicated that templates were more effective on controlling texture of TiN thin film than adjusting deposition parameters. For the oxidation of ZrN thin film, monoclinic (m-ZrO2) and tetragonal (t-ZrO2) phases of ZrO2 were coexisted in all heat-treated specimens, and t-ZrO2 is the dominant phase in the ZrN specimen with higher N/Zr ratio while m-ZrO2 is prevailed in the ZrN specimens with lower N/Zr ratios. There was no substantial difference in the phase ratio and preferred orientation of m-ZrO2 grown from oxidation of ZrN specimens with different textures. Blisters were observed on the surface of the heat-treated ZrN specimens. A semi-quantitative analysis was proposed to examine the driving force of the blister formation, indicating that blisters may result from the compressive stress induced by the volume expansion from ZrN to m-ZrO2.

    致謝 I 摘要 III Abstract IV Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Characteristics of TiN, ZrN and ZrO2 3 2.1.1 Characteristics of TiN and ZrN 3 2.1.2 Characteristics of ZrO2 3 2.2 The Control of TiN Thin Film Texture 7 2.2.1 Models of Preferred Orientation or Texture in TiN Thin Films 7 2.2.2 Texture Control 9 2.3 Preparation of ZrO2 Thin Films 12 2.3.1 The Oxidation of ZrN Thin Film 13 Chapter 3 Experimental Details 16 3.1 Specimen Preparation and Coating Process 16 3.1.1 Preparation of TiN and Ti Thin Films 16 3.1.2 Preparation of ZrN Films 17 3.1.2.1 Unbalanced Magnetron Sputtering 17 3.1.2.2 Hollow Cathode Discharge Ion-Plating (HCD-IP) 18 3.1.3 Heat Treatment 18 3.2 Characterization Methods 23 3.2.1 X-ray Photoelectron Spectroscopy (XPS) 23 3.2.2 Rutherford Backscattering Spectroscopy (RBS) 23 3.2.3 Auger Electron Spectroscopy (AES) 24 3.2.4 Field-Emission Gun Scanning Electron Microscopy (FE-SEM) 24 3.2.5 X-ray Diffraction (XRD) 25 3.3 Properties Measurement 26 3.3.1 Hardness and Young’s Modulus 26 3.3.2 Residual Stress 26 3.3.4 Color (L*a*b*) and Reflectance 27 3.3.5 Refractive Index 27 3.3.6 Electrical Resistivity 28 Chapter 4 Results 30 4.1 Compositions 30 4.1.1 XPS 30 4.1.2 RBS 30 4.2 Structure 38 4.2.1 θ/2θ XRD 38 4.2.2 SEM 48 4.2.3 AES 53 4.3 Properties 56 4.3.1 Electrical Resistivity 56 4.3.1 Electrical Resistivity 56 4.3.2 Residual Stress 58 4.3.3 Hardness 60 4.3.4 Packing Density 61 4.3.5 Color and Reflectance 61 4.3.6 Refractive Index 68 Chapter 5 Discussion 69 5.1 Template Effect 69 5.1.1 Structure 69 5.1.1.1 Texture Evolution 69 5.1.1.2 The Phase Transition of ZrN to ZrO2 73 5.1.2 Properties 77 5.1.2.1 Hardness 77 5.2 The Formation of Blisters 80 Chapter 6 Conclusions 84

    [1]W.J. Chou, G.P. Yu, J.H. Huang, Surf. Coat. Technol., 149 (2002) 7.
    [2] W. Liu, X. Liu, W. T. Zheng and Q. Jiang Surf. Sci. 600 (2006) 257.
    [3] A.H. Heuer, M. Ruhle, Phase Transformation in ZrO2 containing ceramics, American Ceramic Society, 1984.
    [4] J.P. Abriata, R.Versaci, J. Garces, Bull. Alloy Phase Diagrams,7 (1986) 116.
    [5]F. C. Nonaaker, Chem. Met. Eng., 31 (1924) 151.
    [6]S. Schmauder, H. Schubert, J. Am. Ceram. Soc., 69 (1986) 534.
    [7]T. Sato, S. Ohtaki, M. Shimada, J. Mater. Sci., 20 (1985) 1466.
    [8]B. Benali, M. Herbst Ghysel, I. Gallet, A. M. Huntz, M. Andrieuz, Appl. Surf. Sci., 253 (2006)1222.
    [9] C.Bartuli, L. Bertamini, S.Matera, S. Sturles, Material Science and Energineering A-Structural Material Properties Microstructure and Processing 199/2 (1995) 229.
    [10]D.L. Porter, A.H.Heuer, J.Am.Ceram. Soc., 62 (1979) 298.
    [11]Q.Zhang,J. Shen, J. Wang ,G. Wu , L. Chen, Int. J. Inorg.Mater., 2 (2000)319.
    [12] G.D. Wilk, R.M. Wallance, J.M.Anthony, J.Appl. Phys. 89 (2001)5243.
    [13]C.M. Lopez, N.A.Suvorova, E.A.Irene, A.A. Suvorova, M.Saunders. J.Appl. Phys.98 (2005) 033506-6.
    [14] JCPDS file 65-0970.
    [15] JCPDS file 89-5269.
    [16]J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, S. A. Barnett, J.Appl. Phys. 72(5) (1992) 1805.
    [17] L.E. Tot, Transition Metal Carbides and Nitrides, Academic Press, New York, 1971, p. 188
    [18] J.H. Huang, K.W. Lau, G.P. Yu, Surf. Coat.Technol., 112 (1999)108.
    [19]H. Ljungcrantz, M.Odén, L. Hultman, J. E. Greene and J.-E. Sundgren, J. Appl. Phys., 80(12) (1996) 6725.
    [20]A. J. Perry, Vficlav Valvoda, David Rafaja, Thin Solid Films, 214 (1992) 169.
    [21]E. Torok, A.J. Perry, L.Chollet, W.D.Sproul, Thin Solid Films, 153 (1987) 37.
    [22]J.A. Sue, Surf. Coat. Technol., 54/55 (1992) 154.
    [23]A.J.Perry, Thin Solid Films 193 (1990) 463.
    [24]S. Logothetidis, I. Alexandrou, S.Kokkou, Surf. Coat. Technol., 80 (1996) 66.
    [25]P. Jin, S. Maruno, Jpn. J. Appl. Phys.,30 (1991) 1463.
    [26] W.-L. Pan, G.-P.Yu, J.-H. Huang, Surf. Coat. Technol., 110 (1998) 111.
    [27]J.-E. Sundgren, B.-O. Johansson,S.-E.Karlsson, Surf. Sci.,128 (1983) 265.
    [28]E. Buke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol.,112 (1999) 108.
    [29]JCPDS file 65-1023.
    [30]JCPDS file 85-1007.
    [31]JCPDS file 89-9069.
    [32]W.A. Roth, B. Becher, Z. Physik. Chem., 145 A (1929) 461.
    [33]O. Ruff, F. Ebert, Z. Anorg. Allgem. Chem., 180 (1929) 19.
    [34]L. Passerini, Gazz. Chim. Ital., 60 (1930) 672.
    [35]K. Maca, H. Hadraba, J. Cihlar, Ceram. Int., 30 (2004) 843.
    [36] Materials Handbook, edited by F. Cardarelli (Springer, New York, 2000) p. 362.
    [37]F.C. Nonamaker, Chem. Met. Eng., 31 (1924) 151.
    [38]Oswald Kubaschewski, C.B. Alcock, Zirconium: Physico-chemical Properties of Its Compounds and Alloys, International Atomic Energy Agency, 1976.
    [39]A. Hidaka, J. Nakamura, J. Sugimoto, Nucl. Eng. Des., 168 (1997) 361.
    [40]F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
    [41]X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Mater. Sci. Eng., 335 (2002) 246.
    [42]B. Karlik, E.K. Chang, S.G. Louie, Phys. Rev. B, 57 (1998) 7027.
    [43]C.S. Hwang, H.J. Kim, J. Mater. Res.,8 (1993) 6.
    [44]Z.W. Zhao, B.K. Tay, G.Q. Yu, S.P. Lau, J. Phys.:Condens.Matter, 15 (2003) 7707.
    [45]S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wutting, Vacuum, 75 (2004) 7.
    [46] J.-E. Sundgren, Thin Solid Films, 128 (1985) 21.
    [47]G. S. Chen, J. J. Guo, C.K. Lin, C. S. Hsu, L. C. Yang, J. S. Fang, J. Vac. Sci. Technol. , A 20 (2002) 479.
    [48] D.Dobrev, Thin Solid Films, 128 (1982) 41.
    [49] G.N.Van WYK, H.J. Smith, Nucl. Instrum. Methods , A170 (1980) 443.
    [50]R.M. Bradley, J.M.E. Harper, D.A.Smith, J. Appl. Phys. ,60 (12) (1986) 4160.
    [51] L. Hultman, J.E. Sundgren, J.E. Greene, J. Appl. Phys, 66 (2) (1989) 15.
    [52]J. P. Zhao, X.Wang, Z.Y. Chen, S.Q.Yang,T.S. Shi,X.H. Liu, J. Phys. D, Appl. Phys., 30 (1997) 5.
    [53] D. Gall, S. Kodambaka, M. A. Wall, I. Petrov , J.E. Greene, J. Appl. Phy., 93 (2003) 9086.
    [54]J. Pelleg, L.Z. Zevin, S. Lungo, Thin Solid Films,197 (1991)117.
    [55] U.C. Oh , J.H. Je, J. Appl. Phys., 74(3) (1993) 1692.
    [56] J. H. Je, H.K. Kim, K. S. Liang, J. Appl. Phys., 81 (1997) 6126.
    [57] J.E. Greene, J.-E. Sudgren , L. Hultmam, I. Petrov, D.B. Bergstrom, Appl. Phys. Lett., 67 (20) (1995) 2928.
    [58] L. Hultman, J-E. Sundgren, J. E. Greene, D. B. Bergstrom, I. Petrov, J. Appl. Phys., 78 (9) (1995) 5395.
    [59] J.-S. Chun, I. Petrov. , J.E. Greene, J. Appl. Phy., 86 (1999) 3633.
    [60] C. -H. Ma, J.-H. Huang, Haydon Chen, Thin Solid Films, 446 (2004)184.
    [61]J.-H. Huang, C.-H. Lin, Hydn Chen, Mater. Chem. Phys., 59 (1999) 49.
    [62]Y. M. Chen, G. P. Yu and J.H. Huang, Vacuum 66 (2002) 19.
    [63]M.Kobayashi and Y. Doi, Thin Solid Films 157(1984) 254.
    [64]M. K. Lee, H.S. Kang, W.W. Kim, J. S. Kim, W.J. Lee, J. Mater. Res., 12 (1997) 2393.
    [65]P.Patsalas, C. Charitidis, L. Logothetidis, Surf. Coat. Technol.,125 (2000) 335.
    [66] Y. H. Cheng, B.K.Tay, S. P. Lau, J.Vac. Sci. Technol., A 20 (4) (2002) 1270.
    [67] Rajarshi Banerjee, Ramesh, Chandra, Pushan Ayyub, Thin Solid Films, 405 (2002) 64.
    [68] J.-H. Huang, K.-W. Lau, G. -P. Yu, Surf. Coat. Tech., 191 (2005) 17.
    [69] A. Rizzo, M. A. Signore, M. F. De Riccardis, L. Capodeci, D.Dimaio , T. Nocco, Thin Solid Films, 515 (2007) 6665.
    [70]J.-H. Huang, Y.-P. Tsai, G. -P. Yu, Thin Solid Films, 355-356 (1999) 440.
    [71]J.-H. Huang, C.-H. Ma. Haydn Chen, Surf. Coat. Technol., 200 (2006) 5937.
    [72]J.-H Huang, C.-H. Ma, Haydn Chen, Surf. Coat. Technol., 201 (2006) 3199.
    [73] J.-H Huang, F.-Y. Ouyang, G.-P. Yu, Surf. Coat. Technol., 201 (2007) 7043.
    [74] O. Bernard, A. M. Huntz, M.Andrieux, W. Seiler, V. Ji , S. Poissonnet, Appl. Surf. Sci., 253 (2007) 4624.
    [75]X. Wu, D. Landheer, M. J. Graham, H.W. Chen, T.Y. Huang, T. S. Chao, J. Cryst. Growth ,250 (2003) 479.
    [76]R. Brenier, A. Gagnaire, Thin Solid Films, 392 (2001)142.
    [77]J. Niinistö, M. Putkontn, L. Niinistö, K. Kukli, M. Ritala, M. Leskelä, J. Appl. Phys.,95 (2004) 84.
    [78] S. Ramamurthy, N.S. Subramanian, B. Santhi, Bull. Electrochem., 14(1988)446
    [79] E. E. Khawaja, F. Bouarmrane,A.B. Hallak, M. A. Daous, M.A. Salim, J. Vac. Sci. Technol. ,A11 (1993) 580.
    [80] I. K. Then, M. Mujahid , B. Zhang, Surf. Coat. Technol., 198 (2005) 104.
    [81]S.Venkataraj, Oliver Kappertz, Hansjörg Weis, Robert Drese, R. Jayavel, ,Matthias Wuttig, J. Appl. Phys.,92 (2002) 3599.
    [82]C. Y. Ma, F. Lapostolle, P. Briois, Q.Y. Zhang, Appl. Surf. Sci., 253 (2007) 8718.
    [83] Fletcher Jones, J. Vac. Sci. Technol. ,A6 (6) (1988) 3088.
    [84] L.K.Elbaum, M. Wittmer, Thin Solid Films, 107 (1983)111.
    [85]I.Milošev, H.-H. Strehblow, B.Navinšek, Thin Solid Films, 303 (1997) 246.
    [86] P. Panjan, B. Navinšek, A. Cvelbar, A. Zalar, I. Milošev, Thin Solid Films, 281-282 (1996) 298
    [87]Hugues Wiame, Migual-Angel Centeno, Sandra Picard, Philippe Bastians, Paul Grange, J. Eur. Ceram. Soc., 18 (1998) 1293.
    [88]G.V. Tendeloo, G. Thomas, Acta. Metall., 31 (1983) 1611.
    [89] H. N. Al-Shareef, X. Chen, D.J. Lichtenwalner, A.I. Kingon , Thin Solid films, 280 (1996) 265.
    [90]G. L.N. Reddy, J. V. Ramana, Sanjiv Kumar, S. Vikram Kumar, V.S. Raju, Appl. Surf. Sci., 253(2007) 7230.
    [91]Sebastiano Luridiana, Antonio Miotello, Thin Solid Films, 290-291 (1996) 289
    [92]Fu-Hsing Lu ,Wen-Zheng Lo, J. Vac. Sci. Technol. ,A 22 (5) (2004) 2071.
    [93]J.S.Jeng, S.H. Wang , J.S. Chen, J. Vac. Sci. Technol., A 25 (4) (2007) 651.
    [94]D. Briggs, M.P. Seah, Practical Surface Analysis by AES and XPS, John Wiley & Sons, Inc., Chichester, 1983.
    [95]J. Chastain, J.F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corp, 1992.
    [96]American Society for Testing Materials, Symposium on Color, ASTM, Philadelphia, 1941, pp.3.
    [97]JCPD file 65-3362.
    [98] P. Scherrer, Gott. Nachr., 2 (1918) 98.
    [99]G. G. Stony, Proc. R. Soc. Lond. A82 (1909) 17.
    [100] D. Burgreen, Elements of Thermal Stress Analysis, C.P. Press, New York, 1971, p. 462.
    [101] W.J.Chou, G. P. Yu, J.H. Huang, Surf. Coat. Technol., 140 (2001) 206.
    [102 ]C.T.Chen, Y.C. Song, G.P. Yu, J. H. Huang, J. Mater. Eng. Perform.,7 (3)(1998) 324.
    [103]I. A. Ovid’ko, Science, 295 (2002) 2386.
    [104] C.-H. Ma, J.-H. Huang, Haydn Chen, Surf. Coat. Technol.,200 (2006) 3868.
    [105] J.-H. Huang, H.-C. Yang, X.-J. Gao, G.-P. Yu, Surf. Coat. Technol., 195 (2005) 204.
    [106 ]William D. Nix, Mechanical Properties of Thin Films, http://www.imechanica.org/node/530, (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE