研究生: |
許之昊 Xu, Zhi-Hao |
---|---|
論文名稱: |
有限域上的一般線性群的特征標 The characters of general linear groups over a finite field |
指導教授: |
潘戍衍
Pan, Shu-Yen |
口試委員: |
魏福村
Wei, Fu-Tsun 康明軒 Kang, Ming-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 45 |
中文關鍵詞: | 一般線性群 、特征標 、群表示 |
外文關鍵詞: | general linear group, character, representation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Steinberg 通過考慮一些置換表示找出了GL_2(q)和GL_3(q)的所有不可約表示。在本文中,我們將介紹另一種由Green 和 Lusztig提出的方法以計算有限域上一般線性群的特征標。我們將以此方法計算出GL_2(q),GL_3(q) 的特征標。這種方法引用了對稱群表示的特征標和Green 函數。
Steinberg derived the irreducible representations of GL_2(q) and GL_3(q) by considering permutation representations. In this paper, we will present an alternative method from Green and Lusztig for calculating the characters of general linear groups over finite fields. Specifically, we will calculate the characters of GL_2(q) and GL_3(q) using this approach, which involves referencing the characters of symmetric groups and Green functions.
[Car93] Roger W. Carter, Finite groups of Lie type: conjugacy classes and complex characters, Wiley Classics Library, John Wiley & Sons Inc, 1993.
[DM20] Fran¸cois Digne and Jean Michel, Representations of finite groups of Lie type, 2 ed., London Mathematical Society Student Texts, vol. 95, Cambridge University Press, 2020.
[FH91] William Fulton and Joe Harris, Representation theory: A first course, Springer Science & Business Media, 1991.
[Gre55] James A Green, The characters of the finite general linear groups, Transactions of the American Mathematical Society 80 (1955), no. 2, 402–447.
[Ser77] Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, vol. 42, Springer, 1977.
[SIB+70] R Steinberg, N Iwahori, A Borel, TA Springer, CW Curtis, and R Carter, Seminar on algebraic groups and related finite groups, Lecture Notes in Mathematics, vol. 131, Springer, 1970.
[Ste51] Robert Steinberg, The representations of GL(3, q), GL(4, q), PGL(3, q), and PGL(4, q), Canadian Journal of Mathematics 3 (1951), 225–235.