研究生: |
楊雅惠 Yang, Ya-Hui |
---|---|
論文名稱: |
水熱法製作氧化鋅及銦鎵鋅氧化物薄膜電晶體之特性探討 Characteristics of ZnO and IGZO Thin-film transistors fabricated by hydrothermal solution process |
指導教授: |
楊士禮
Yang, Sidney S. |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 金屬氧化物 、銦鎵鋅氧化物 、薄膜電晶體 |
外文關鍵詞: | Metal Oxide, IGZO, Thin Film Transistors |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用水熱法,合成具有奈米粒子的金屬半導體化合物 (氧化鋅 ZnO及銦鎵鋅氧化物 IGZO) 溶液,並且以ZnO 及IGZO材料做為主動層的薄膜電晶體 (Thin Film Transistors) 之特性探討。結晶相的ZnO 及IGZO薄膜可在低溫 (95 °C) 下形成。該薄膜不僅是晶粒尺寸和形狀均勻,且截面出現緻密的膜。其銦鎵鋅氧化物 (IGZO) 之電晶體元件具有良好的交換能力 (switch ability),高的汲極電流 (> 105 安培) 和低的臨界電壓 (0.9 V)。其場效遷移率為2.3 cm2/V-s,電流的開關比超過 106,可做為商用薄膜電晶體之應用。
我們還研究了ZnO和IGZO薄膜受到不同能量的電射激光照射後,其結構、光學和電學之性能探討。該結晶結構的增強是隨著雷射的能量增加而增強。透光率也分別從85 % 增至92 % (氧化鋅ZnO) 及75 % 增至89 % (銦鎵鋅氧化物IGZO)。氧化鋅和銦鎵鋅氧化物之電晶體元件,其遷移率各分別增加了2.8倍(0.19 cm2/V-s 增至0.5 cm2/V-s)及5倍(1.3 cm2/V-s 增至7.65 cm2/V-s)。
We fabricated a bottom-gate thin film transistor (TFT) with the active layer of Indium-Gallium-Zinc Oxide (IGZO) nano particles prepared from water solution. The poly-crystallized InGaZn2O5 films were formed by spin-coating method and post-baked at low temperature (95 °C). The morphology of the IGZO film indicates that not only are the grain size and shape uniform but the cross section of the film appears dense, considering the films were fabricated by a solution process at low temperature. The TFT device shows good switching ability, high drain current (>105) and low threshold voltage (0.9 V). Its field-effect mobility of 2.3 cm2/V-s and current on-off ratio over 106 are very promising for TFT applications.
We also investigated the zinc oxide (ZnO) and IGZO thin films subjected to laser irradiation. Structural, optical and electrical properties of the as-deposited and laser irradiated films at different laser energies were studied. The crystallinity of the structure increased and it became conductive after laser treatment. The transmittances without/with laser irradiation had a net rise of 85 % to 92 % and 80 % to 95 % (@550nm) for 250 nm ZnO and IGZO films, respectively. The quantity of IGZO enhanced transmittance was higher than that of ZnO. We fabricated thin film transistors (TFTs) with ZnO and IGZO as the active layer. The as- deposited ZnO/IGZO TFT devices had a field effect mobility of 0.19 cm2/V-s and 1.3 cm2/V-s, respectively. The electrical characteristics increased by more than 2.8 times for ZnO and by 5 times for IGZO of un-irradiated laser treatment. The field-effect mobility of ZnO and IGZO are 0.5 cm2/V-s and 7.65 cm2/V-s
Y. Sun and J. A. Rogers, Adv. Mater. Vol.19, 1897 (2007).
D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J. –h. Jeong, B. Cheong, Y. –J. Baik, W. M. Kim, vol. 515, 1364 (2006).
H. C. Pan, M. H. Shiao, C. Y. Su, and C. N. Hsiao, J. Vac. Sci. Technol. A , vol. 23, 1187 (2005).
Yabuta, H., M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., vol. 89, 112123( 2006)
T. Minami, J. Vac. Sci. Technol. A, vol. 17, 1765 (1999)
T. Sasabayashi, N. Ito, E. Nishimura, M. Kon, P. K. Song, K. Utsumi, A. Kaijo, and Y. Shigesato, Thin Solid Films, vol. 445, 219 (2003).
K. J. Allen, Proceed. IEEE.,vol. 93, 1394 (2005).
K. Jain, M. Klosner, M. Zemel, S. Raghunandan, Proceed. IEEE., vol. 93, 1500 (2005).
http://geology.com/articles/indium.shtml
Dawar A. L. and Joshi J. C., J. Mater. Sci., vol. 19, 1(1984)
Chopra K. L., Major S. and Pandya D. K., Thin Solid Films, vol. 102, 1 (1983)
Freeman A. J., Poeppelmeier K. R., Mason T. O., Channg R. P. H. and Marks T. J., MRS Bull., vol. 25, 45 (2000)
Coutts T. J., Young D. L. and Li X., MRS Bull., vol. 25, 58 (2000)
Yanagawa K., Ohki Y., Omata T., Hosono H., Ueda N. and Kawazoe H., Appl. Phys. Lett., vol. 65, 406 (1994)
C. C. Liu, M. L. Wu, K. C. Liu, S. H. Hsiao, Y. S. Chen, G. R. Lin, and J. J. Huang, “Transparent ZnO Thin-Film Transistors on Glass and Plastic Substrates Using Post-Sputtering Oxygen Passivation”, Journal of Display Technology, vol. 5, 193 (2009)
T. Kamiya, K. Nomura, and H. Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping”, Journal of Display Technology, vol. 5, 273, (2009)
Tadatsugu Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Technol. Vol. 20, S35–S44 (2005)
W.E. Spear, P.G. LeComber, Solid State Commun. Vol. 17, 1193 (1975)
E.P. Denton, H. Rawson, J.E. Stanworth, Nature, vol. 173, 1030 (1954)
I.G. Austin, N.F. Mott, Adv. Phys. Vol.18, 41 (1969).
H. Ohta, H. Hosono, Mater. Today, vol. 4, 42, (2004)
T. Kamiya, H. Hosono, Semicond. Sci. Technol. Vol. 20, S92 (2005)
H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application” J. Non-Cryst. Solids, vol. 352, 851 (2006)
H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples”, J. Non-Cryst. Solids, vol. 198-200, 165 (1996)
S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, H. Hosono, “A p-type amorphous oxide semiconductor and room temperature fabrication of amorphous oxide p-n heterojunction diodes”, Adv. Mater. Vol. 15 ,1409-1413 (2003)
Nomura, K., H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, ”Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, 488-492 (2004)
Nomura, K., H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono,” Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor”, Science, vol. 300, 1269 (2003)
Nomura, K., A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations” Physical review B, 75, 035212 (2007).
R. L. Hoffman, B. J. Norris and J. F. Wager, “ZnO-based transparent thin-film transistors”, Appl. Phys. Lett. 82, 733 (2003)
K. Okamura, N. Mechau, D. Nikolova, and H. Hahn, “Influence of interface roughness on the performance of nanoparticulate zinc oxide field-effect transistors ”, Appl. Phys. Lett. 93, 083105 (2008)
Y. Ogo, K. Nomura, H. Yanagi, H. Ohta, T. Kamiya, M. Hirano, and H. Hosono, “Growth and structure of heteroepitaxial thin films of homologous compounds RAO3(MO)m by reactive solid-phase epitaxy”, Thin solid films, 496, 64 (2006)
Mikawa. M. “Characteristion of ZnO-InO transparent conducting films by PLD”, Materials Research Bulletin, 40, 1052 (2005)
David B., Laura L, Conal E. “High-mobility ultrathin semiconducting films prepared by spin coating”, Nature 428, 299 (2004)
G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kimz, “Formation mechanism of solution-process nano crystalline IGZO”, Journal of electrochemical society 156, H7 (2009)
T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Combinatorial Study on In-Ga-Zn-O Semiconductor Films as Active-channel Layers for Thin-film Transistor”, Mater. Res. Soc. Symp. Proc., 928, GG10-04 (2006)
R. Cebulla, R. Wendt, and K. Ellmer, “Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties”, J. Appl. Phys., 83, 1087 (1998)
S. N. Bai and T. Y. Tseng, “Effect of alumina doping on structural, electrical, and optical properties of sputtered ZnO thin films”, Thin Solid Films, 515, 872 (2006).
B. J. Norris, J. Anderson, J. F. Wager, and D. A. Keszler, “Spin-coated zinc oxide transparent transistors”, J. Phys. D 36, L105 (2003)
V. Subramanian, T. Bakhishev, R. David, and K. V. Steven, “Solution Processed Zinc Oxide Transistors for Low-Cost Electronics Applications”, Journal of Display Technology, vol. 5, 525 (2009)
H. H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C. C. Wu: “Modeling of Amorphous IGZO Thin Film”, Appl. Phys. Lett. 92, 133503 (2008)
E.I. Shtyrkov, I.R. Khaibullin, M.M. Zaripov, M.F.G. Galyatudinov, R.M. Bayazitov, Sov. Phys. Semicond. 9, 1309 (1976).
G.K. Bhaumik, A.K. Nath, S. Basu, “Laser annealing of zinc oxide thin film deposited by spray-CVD”, Materials Science and Engineering B52 25–31,(1998)
C. S. Snadu, V. S. Teodorescu, C.Ghica, B. Canut, M.G. Blancchin, J.A. Roger, A. Brioude. T. Bret, P. Hoffmann, C. Garapon, “Densification and crystallization of SnO2 sol-gel films using excimer laser annealing”, Applied surface science, Vol. 208-209, 382, (2003)
W.M. Tsang, F.L. Wong, M.K. Fung, J.C. Chang, C.S. Lee, S.T. Lee, “Transparent conducting aluminum-doped zinc oxide thin film prepared by sol–gel process followed by laser irradiation treatment”, Thin Solid Films, 517 891–895, (2008)
M. Nakata1, K. Takechi, T. Eguchi, E Tokumitsu, H. Yamaguchi, and S Kaneko; “Flexible High-Performance Amorphous InGaZnO4 Thin-Film Transistors Utilizing Excimer Laser Annealing”, Japanese Journal of Applied Physics 48, 081607 (2009)
J.N. Bradford, R.T. Williams, W.L. Faust, Phys. Rev. Lett. 35, 300 (1975).
Li Y, Tompa GS, Liang S, Gorla C, Lu C, Doyle J, J Vac Sci Techol A. 15, 1663 (1997)
Liu M, Kitai AH, Mascher P. J Lumin. 54, 35 (1992)
Palmer DW. Availiable, from:http://www.semiconductors.co.uk.
T. Kiyoshi, Y., Akihiko, S., Adarsh, “ Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices”. Springer. p. 357,( 2007)
T. Minami, T. Miyata, and T. Yamamoto, Surf. and Coatings Technol., 583.108-109 (1998)
S. M. Sze, Physics of semiconductor devices. New York: John Wiley & Sons, second ed., (1981).
V. Srikant and D. R. Clarke, J. Appl. Phys. 83, 5447 (1998)
R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bulletin, 52 (2000)
D. C. Look, Mat. Sci. and Eng. B, B80, 383 (2001)
Wagner, P; Helbig, R. "Halleffekt und anisotropie der beweglichkeit der elektronen in ZnO". Journal of Physics and Chemistry of Solids, 35: 327 (1974)
K. Nomura, H. Oht, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, "Electron transport in InGaO3 (ZnO)m (m=integer) studied using single crystalline thin films and transparent MISFETs”, Thin Solid Films, 445 322–326 (2003)
N. Kimizuka, M. Isobe, M. Nakamura, J. Solid State Chem.,116, 170 (1995)
C. Li, Y. Bando, M. Nakamura, M. Onoda, N. Kimizuka, J. Solid State Chem., 139 , 347 (1998)
H. Kumomi, N. Kaji, H. Yabuta, M. Sano, K. Abe,T. Den, K. Nomura, T. Kamiya, and H. Hosono, Proceeding of the 2nd Int. TFT Conf., p176 (2006).
Hideo Hosono, “Transparent Amorphous Oxide Semiconductors for
High Performance TFT”, SID DIGEST,1830 (2007)
E.P. Denton, H. Rawson, J.E. Stanworth, Nature 173, 1030 (1954)
I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969).
T. Omata, N. Ueda, K. Ueda and H. Kawazoe, Appl. Phys. Lett., 64, 1077 (1994)
H. Hosono, M. Yasukawa, H. Kawazoe,” Novel oxide amorphous semiconductors: transparent conducting amorphous oxides” J. Non-Cryst. Solids, 203, 334 (1996)
S. Narushima, M. Orita, M. Hirano, H. Hosono, “electronic structure and transpaort properties” Phys. Rev. B, 66, 035203 (2002)
S. Narushima, H. Hosono, J. Jisun, T. Yoko, K. Shimakawa, “electronic transport and optical properties of proton-implanted a-CdGeO films” ,J. Non- Cryst. Solids, 274, 313 (2000)
H. Hosono, K. Nomura, Y. Ogo, T. Urug and T. Kamiy,” Factors controlling electron transport properties in transparent amorphous oxide semiconductors” J. Non-Cryst Solids, 354, 2796 (2008)
M. Oritay, H. Ohta, M. Hirano, S. Narushima and H. Hosono, “Amorphous transparent conductive oxide InGaO3(ZnO)m (m≦4): a Zn 4s conductor”, philosophical magazine B, 81, 501 (2001)
S.A. VanSlyke, C.H. Chen, C.W. Tang, Appl. Phys. Lett., 69, 2160 (1996)
Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Specific contact resistances between an amorphous oxide semiconductor In–Ga–Zn–O and metallic electrodes”, Thin Solid Films, 516, 5899 (2008)
E.I. Shtyrkov, I.R. Khaibullin, M.M. Zaripov, M.F.G. Galyatudinov, and R.M. Bayazitov, Sov. Phys. Semicond., 9, 1309 (1976)
R.T. Young, J. Narayan, W.H. Christie, G.A. Van der Leeden, J.I. Levatter, L.J. Cheng, Solid State Technol., 26, 183 (1983)
G.K. Bhaumik, A.K. Nath, and S. Basu, “Laser annealing of zinc oxide thin film deposited by spray-CVD”, Materials Science and Engineering, B52, 25 (1998)
C. S. Snadu, V. S. Teodorescu, C.Ghica, B. Canut, M.G. Blancchin, J.A. Roger, A. Brioude. T. Bret, P. Hoffmann, and C. Garapon, “Densification and crystallization of SnO2 sol-gel films using excimer laser annealing”, Applied surface science, Vol. 208-209, 382 (2003)
W.M. Tsang, F.L. Wong, M.K. Fung, J.C. Chang, C.S. Lee, and S.T. Lee, “Transparent conducting aluminum-doped zinc oxide thin film prepared by sol–gel process followed by laser irradiation treatment”, Thin Solid Films, 517, 891–895 (2008)
Seung-Jae Moon, Minghong Lee, and Costas P. Grigoropoulos, “Heat Transfer and Phase Transformations in Laser Annealing of Thin Si Films”, J. Heat Transfer, 124, 253 (2002)
M. Nakata1, K. Takechi, T. Eguchi, E Tokumitsu, H. Yamaguchi, and S Kaneko; “Flexible High-Performance Amorphous InGaZnO4 Thin-Film Transistors Utilizing Excimer Laser Annealing”, Japanese Journal of Applied Physics, 48, 081607 (2009)
G.K. Bhaumik a, A.K. Nath b, S. Basu, “Laser annealing of zinc oxide thin film deposited by spray-CVD”, Materials Science and Engineering, B52, 25–31 (1998)
G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kimz, “Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor”, Journal of The Electrochemical Society, 156 , H7-H9, (2009)
B. D. Cullity, “elements of X-ray Diffraction” 2nd edition
Joint Committee on Power Diffraction Standards, Power Diffraction File, International Center for Diffraction Data, Swarthmore, PA, card 36–1451 and 40-0252, 1988.
T. Kamiya, Y. Takeda, K. Nomura, H. Ohta, H. Yanagi, M. Hirano, and H. Hosono, “Self-Adjusted, Three-Dimensional Lattice-Matched Buffer Layer for Growing ZnO Epitaxial Film: Homologous Series Layered Oxide, InGaO3(ZnO)5”, Cryst. Growth Des., vol. 6, pp. 2451-2456, (2006)
H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe,, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples”, J. Non-Cryst. Solids, vol. 198–200, pp. 165-169, (1996)
A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, “Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors”,Appl. Phys. Lett., vol. 90, 123512, (2007)
D. Bao, H. Gu, and A. Kuang, Thin Solid Films, vol. 312, pp. 37, (1998)
Y. Ogo, K. Nomura, H. Yanagi, H. Ohta, T. Kamiya, M. Hirano, H. Hosono, “Growth and structure of hetero-epitaxial thin films of homologous compounds RAO3(MO)m by reactive solid-phase epitaxy: Applicability to a variety of materials and epitaxial template layers”, Thin Solid Films, 496, 64 – 69 (2006)
J.N. Bradford, R.T. Williams, and W.L. Faust, Phys. Rev. Lett. 35, 300 (1975)
R.T. Young, J. Narayan, W.H. Christie, G.A. Van der Leeden, J.I. Levatter, and L.J. Cheng, Solid State Technol. 26, 183 (1983)
John C. Vickerman, “Surface Analysis-The Principal Techniques”. 1997
http://www.jhu.edu/~chem/fairbr/surfacelab/xps.html
Y. K. Moon, D. Y. Moon, S. Lee, S. H. Lee, and J. W. Park,” Effects of oxygen contents in the active channel layer on electrical characteristics of ZnO-based thin film transistors”, J. Vac. Sci. Technol. B, Vol. 26, 4, (2008)
T. Szörényi, L. D. Laude, I. Bertóti, Z. Kántor, and Zs. Geretovszky, J. Appl. Phys. 78, 6211 (1995)
John C. Vickermam, Surface Analysis, p. 43, John Wiley & Sons, New York , (1997)
L.K. Rao, V. Vinni, Appl. Phys. Lett. 63, 608, (1993).
R. Cebulla, R. Werndt, K. Ellmer, J. Appl. Phys. 83 1087 (1998)
M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, J. Cryst. Growth, 220, 254, (2000)
J.C.C. Fan, J.B. Goodenough, J. Appl. Phys. 48, 3524, (1977)
P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes Jr, Appl. Phys. Lett., 82 , 1117, (2003)
R. Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Goncalves, E. Fortunato, J. Appl. Phys. 101, 044505, (2007)
S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, Appl. Phys. Lett., 49, 394, (1986)
J.-H. Bae, J.-M. Moon, J.-W. Kang, H.-D. Park, J.-J. Kim, W. J. Cho, and H.-K. Kim, J. Electrochem. Soc., 154, J81, (2007)
J. C. C. Fan and J. B. Goodenough, J. Appl. Phys. 48, 3524, (1977)
28Wen-Fa Wu and Bi-Shiou Chiou, Semicond. Sci. Technol. 11, 196, (1996)
Handbook of X-ray photoelectron spectroscopy.
B. Kumar, H. Gong, R. Akkipeddi, J. Appl. Phys. 97, 0637061, (2005)
A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum DotsSemiconductor Clusters, Nanocrystals, and Quantum Dots”, Science, vol. 271, pp. 933-937, (1996)
J. I. Pankove: Solar Cells 24 299, (1988)
J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solodi ,15 627, (1966)
Y.Ogo, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, “Amorphous Sn–Ga–Zn–O channel thin-film transistors”, phys. stat. sol. (a) 205, 1920–1924, (2008)
E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Reo. vol. 93, P. 632, (1954)
T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. (London), Vol. B67, 775, (1954)
M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono, “Trap densities in amorphous-InGaZnO4 thin-film transistors”, Appl. Phys. Lett., 92, 133512, (2008)
D. K. Schroder, “Semiconductor material and device characterization”, New York: John Wiley & Sons, 2nd (1998)
L. J. van der pauw, “A method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape”, Philips Technical Rev. 20, 220 1958/1959
K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film ”, Jpn. J. Appl. Phys., vol. 45, pp. 4303-4308, (2006)
Cherie R. Kagan, Paul Andry, ”Thin-Film Transistors”,
T. C. Funga, C. S. Chuangc, K. Nomura, H. P. David Shieh, H. Hosono, and Jerzy Kanickia, “Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors”, Journal of Information Display, vol. 9, 21-29, (2008)
J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, “Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors”, Appl. Phys. Lett. 93, 123508, (2008)