研究生: |
李詠嵐 Yung-Lan Lee |
---|---|
論文名稱: |
室內空氣中甲醛的綠色化學分析方法及降解研究 Determination of Formaldehyde in Indoor Air by Green Analytical Method and Its Degradation Study |
指導教授: |
凌永健
Yong-Chien Ling |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 甲醛 、綠色化學 、溶劑棒微萃取 、光觸媒 、降解 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人們於日常生活中因曝露於室內空氣污染,所引起的健康風險遠大於室外空氣。環保署於2005年提出「室內空氣品質建議值草案」,規定甲醛的建議濃度為0.1 ppmv。
空氣中甲醛檢測標準方法規定,採集之室內空氣樣品須帶回實驗室檢測,每個樣品在前處理過程中,會使用數毫升的含氯有機溶劑。本研究利用溶劑棒微萃取技術 (Solvent Bar Microextraction, SBME),取代現行標準方法使用的液-液萃取技術,成功達到避免廢棄物之產生和減少有機溶劑用量,符合綠色化學理念;本研究亦使用配有塗佈2,4-二硝基苯胼(2,4-dinitrophenyl hydrazine, DNPH)濾紙的攜帶型甲醛偵測器,現場實地偵測,10分鐘後即可測定甲醛濃度,達到現場實時測定之綠色化學理念。
本研究使用標準方法和甲醛偵測器方法,比對測定3處大量使用木製產品的新近裝修室內空氣中甲醛,濃度介於0.133~0.321 ppmv,皆高於建議值,相對差異百分比皆低於20%,其中一處在通風30分後,甲醛濃度從0.279 ppmv降為0.131 ppmv。說明此二方法的相匹配,及良好通風可以降低室內甲醛濃度。
本研究亦利用TiO2光觸媒降解甲醛。實驗結果顯示層接層(Layer-by-Layer)法塗佈光觸媒節省時間,均勻性佳、光穿透率高,可以達到90% 降解效率。TiO2光降解醛類(C1~C5)氣體效率佳,低碳數醛類的降解效率較佳;降解途徑為先被氧化成有機酸,再裂解為較低碳數的醛類,裂解反應的速率比氧化反應的速率慢。
The health risk from exposure to indoor air pollution is greater than from outdoor. To effectively promote indoor air quality control, the EPA has issued the draft of the Indoor Air Quality Control Act in 2005 and set the recommended value of indoor formaldehyde concentration as 0.1ppmv.
The standard method for determining formaldehyde in air required the sample being brought back to laboratory for analysis and used several ml of chloroform per sample. We replaced the liquid-liquid extraction used in current standard method by solvent bar microextraction. The approach successfully prevented waste generation and reduced organic solvent use, fulfilling the principles of green chemistry. We also used a portable formaldehyde detecting instrument equipped with an 2,4-dinitrophenyl hydrazine (DNPH) –coated filter, which could determine formaldehyde concentration on-site in 10 min.
We compared the analytical performance between the standard method and the portable method by determining the indoor formaldehyde concentrations in three newly renovated home/office/shops which used many wooden products. The values ranged from 0.133~0.321 ppmv and were all above the recommended values. The relative percent difference were all smaller than 20%,In one location, the formaldehyde concentration decreased from 0.279 ppmv to 0.131 ppmv after 30 min ventilation。The findings demonstrate the compatibility between these two methods and effective reduction of indoor formaldehyde could be achieved by sound ventilation.
We also used TiO2 photocatalyst to degrade formaldehyde. The results show that TiO2 photocatalyst prepared by layer-by-layer method saved time, good uniformity, and high light transmission, which could achieve degradation efficiency of 90%. TiO2 could effectively degrade aldehydes (C1~C5). Low carbon aldehydes showed better efficiency. The aldehyde was converted to carboxylic acid first, then to aldehyde with lower carbon number. The rate of the later reaction (decomposition) is smaller than the former one (oxidization).
[1]US Environmental Protection Agency and the US Consumer Product Safety Commission. The inside story: a guide to indoor air quality.; Washington, DC: US Environmental Protection Agency and the US Consumer Product Safety Commission, Office of Radiation and Indoor Air, 1995; Document #402-K-93-007; p2&p16-17.
[2]US Centers for Disease Control and Prevention and U.S. Department of Housing and Urban Development. Healthy housing reference manual. Atlanta: US Department of Health and Human Services, 2006; Chapter5.
[3]US Consumer Product Safety Commission. An Update on Formaldehyde: 1997 Revision.; Washington, DC: Consumer Product Safety Commission, 1997; CPSC document #725; p3.
[4]Motomizu, S.; Oshima, M.; Sritharathikhun, P. Talanta. 2005, 67, 1014-1022.
[5]Report of Mini Association on Chemical Substances by the Ministry of Health of Japan, 1997.
[6]香港特別行政區政府室內空氣質素管理小組. 辦公室及公眾場所室內空氣質素管理指引.; 香港特別行政區政府物流服務署: 香港, 2003; p.20.
[7]行政院環保署, 公告環署空字第0940106804號, 2005.
[8]US EPA. Green Chemistry Program Fact Sheet.; Washington, DC: US Environmental Protection Agency, Office of Pollution Prevention and Toxics, 2002; #EPA 742-F-02-003.
[9]Anastas, P.; Warner, J. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
[10]Anastas, P. T. Crit. ReV. Anal. Chem. 1999, 29, 167-175.
[11]Namiesnik, J. J. Sep. Sci. 2001, 24, 151-153.
[12]Lawrence H. K.; Liz. U. G.; Jennifer L. Y. Chem. Rev. 2007, ASAP.
[13]行政院環保署, 檢測方法NIEA A711.1, 1993.
[14]US EPA, Compendium Method 8315A, 1996.
[15]US EPA, Compendium Method 0100, 1996.
[16]行政院環保署, 檢測方法NIEA A725.71B, 1999.
[17]行政院環保署, 檢測方法NIEA A705.11C, 2006.
[18]Fung, K.; Grosjean, D. Anal. Chem. 1981, 53, 168-171.
[19]行政院勞委會, 檢測方法CLA2403, 1991.
[20]Kennedy, E. R.; Ashley, K. Appl. Spectrosc. 1992, 46, 266-272.
[21]行政院環保署, 檢測方法NIEA A724.72B, 1999.
[22]Yang, M.; Zhang, X. G.; Li, H. L. Analyst. 2001, 126, 676-678.
[23]Song, Z. H.; Hou, S. A. Int. J. Environ. An. Ch. 2003, 83, 807-817.
[24]Yu, Y. K.; Wen, S.; Fu, J. M. Anal. Chem. 2006, 78, 1206-1211.
[25]Junkermann, W.; Burger, J. M. J. Atmos. Ocean. Tech. 2006, 23, 38-45.
[26]Baltussen, E.; Sandra, P.; David, F.; Cramers, C. J. Microcolumn. Sep. 1999, 11, 737-747.
[27]Jiang, X. M.; Lee, H. K. Anal. Chem. 2004, 76, 5591-5596.
[28]Wolverton, B. C.; Mcdonald, R. C.; Watkins, E. A. Economic. Botany. 1984, 38, 224-228.
[29]Godish, T.; Rouch, J. Am. Ind. Hyg. Assoc. J. 1986, 47, 792-797.
[30]Kondo, T.; Hasegawa, K.; Uchida, R.; Onishi, M.; Mizukami, A.; Omasa, K. Environ. Sci. Technol. 1995, 29, 2901-2903.
[31]曹慧嫻, 國立臺灣大學碩士論文, 2001.
[32]Eriksson, B., Johanssin, L., Svedung, I. The Nordest Symposium on Air Pollution Abatement by Filtration and Respiratory Protection, Copenhagen. 1980.
[33]Gesser, H. D. Environ. Int. 1984, 10, 305-307.
[34]Sekine, Y. Chem. Eng. Of Japan. 1998, 62, 308-310.
[35]Sekine, Y.; Nishimura, A. Atmos. Environ. 2001, 35, 2001-2007.
[36]Fujishima, A.; Honda, K. Nature 1972, 238, 37-38.
[37]Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem. Rev. 1995, 95, 735-758.
[38]Shiraishi, F.; Ohkubo, D.; Toyoda, K.; Yamaguchi, S. Chem. Eng. J. 2005, 114, 153-159.
[39]Peral, J.; Ollis, D. F. J Catal 1992, 136, 554-565.
[40]Ibusuki, T.; Takeuchi, K. Atmos. Environ. 1986, 20, 1711-1715.
[41]Shiraishi, F., Ohbuchi, Y., Yamaguchi, S., Yamada, K., Yamauchi, H., Okano, H. Chemical. Ingenier. Technica. 2001, 73, 601–602.
[42]Shiraishi, F.; Yamaguchi, S.; Ohbuchi, Y. Chem Eng Sci 2003, 58, 929-934.
[43]Zhang, C. B.; He, H.; Tanaka, K. Catal. Commun. 2005, 6, 211-214.
[44]Zhang, C. B.; He, H.; Tanaka, K. Appl. Catal. B-Environ. 2006, 65, 37-43.
[45]http://www.nanomark.itri.org.tw/LabApply/download_2.asp
[46]Anderson, M. A.; Gieselmann, M. J.; Xu, Q. Y. J. Membrane. Sci. 1988, 39, 243-258.
[47]Kim, D. H.; Anderson, M. A. Environ. Sci. Technol. 1994, 28, 479-483.
[48]Blount, M. C.; Kim, D. H.; Falconer, J. L. Environ. Sci. Technol. 2001, 35, 2988-2994.
[49]Ching, W. H.; Leung, M.; Leung, D. Y. C. Sol. Energy. 2004, 77, 129-135.
[50]Iler, R. K. J. Colloid Interface Sci. 1996, 21, 569-594.
[51]Lee, D.; Rubner, M. F.; Cohen, R. E. Nano. Lett. 2006, 6, 2305-2312.
[52]Muggli, D. S.; McCue, J. T.; Falconer, J. L. J. Catal. 1998, 173, 470-483.
[53]Kennedy, J. C.; Datye, A. K. J. Catal. 1998, 179, 375-389.
[54]Sekine, Y. Atmos. Environ. 2002, 36, 5543-5547.
[55]Rasko, J.; Kecskes, T.; Kiss, J. J. Catal. 2004, 226, 183-191.