簡易檢索 / 詳目顯示

研究生: 何 安
Ho, An
論文名稱: 活化抑制作用衍生的周期形態
Pattern formation in an activator-inhibitor system
指導教授: 陳兆年
Chen, Chao-Nien
口試委員: 陳國璋
Chen, Kuo-Chang
曾旭堯
Tzeng, Shuh-Yaur
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 34
中文關鍵詞: 變分學菲茨休-南雲方程反應擴散方程式週期解梯度下降法
外文關鍵詞: Calculus of Variation, Fitzhugh-Nagumo equation, reaction-diffusion model, periodic solution, Gradient Descent Algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們感興趣的是Fitzhugh-Nagumo方程系統的週期解。首先使用變分法
    證明解的存在性。同時我們也透過數值方法來觀察這些週期解的多樣性。藉由差分與
    梯度下降法,這套疊代演算法可以協助我們進一步了解週期解的形態。


    In this thesis, we study the pattern formation in the FitzHugh-Nagumo equations. This
    is an activator-inhibitor type reaction-diffusion system and there is a variational structure
    which will be used in our investigation. We show the existence of periodic solutions by using variational argument to find a minimizer. We also work on the numerical computation
    on such solutions.

    1 Introduction 1 2 Preliminaries 3 3 A test function 6 4 Calculation of J(ˆuL) 10 5 Existence result 22 6 Numerical results 23

    [1] C. -N. Chen, C, -C Chen and C. -C Huang, Traveling waves for the FitzHugh-Nagumo
    system on an infinite channel, J. Differential Equations 261 (2016), 3010-3041.
    [2] C. -N. Chen and Y. S. Choi, Standing pulse solutions to FitzHugh-Nagumo equations,
    Arch. Rational Mech. Anal. 206 (2012), 741-777.
    [3] C. -N. Chen and Y. S. Choi, Traveling pulse solutions to FitzHugh-Nagumo equations,
    Calculus of Variations and Partial Differential Equations 54 (2015), 1-45.
    [4] C. -N. Chen, S. -I. Ei, Y. -P Lin and S. -Y Kung, Standing waves joining with Turing
    patterns in FitzHugh-Nagumo type systems, Communications in Partial Differential
    Equations 36 (2011), 998-1015.
    [5] C. -N. Chen and X. Hu, Maslov index for homoclinic orbits of Hamiltonian systems,
    Ann. Inst. H. Poincare Anal. Non Linearie 24 (2007), 589-603.
    [6] C. -N. Chen and X. Hu, Stability criteria for reaction-diffusion systems with skewgradient structure, Communications in Partial Differential Equations 33 (2008), 189-
    208.
    [7] C. -N. Chen and X. Hu, Stability analysis for standing pulse solutions to FitzHughNagumo equations, Calculus of Variations and Partial Differential Equations, 49
    (2014), 827-845.
    [8] C. -N. Chen, Shih-Yin Kung and Yoshihisa Morita, Planar standing wavefronts in
    the FitzHugh-Nagumo equations, SIAM J. Math. Anal. 46 (2014), 657-690.
    [9] C. -N. Chen and K. Tanaka, A variational approach for standing waves of FitzHughNagumo type systems, J. Differential Equations 257 (2014), 109-144.
    [10] A. Doelman, P. van Heijster and T. Kaper, Pulse dynamics in a three-component
    system: existence analysis, J. Dynam. Differential Equations 21 (2008), 73-115.
    [11] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), 445-466.
    [12] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current
    and its application to conduction and excitation in nerve, J. Physiol. 117 (1952),
    500-544.
    [13] C. K. R. T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo
    system, Trans. Amer. Math. Soc. 286 (1984), 431-469.
    34
    [14] A. W. Liehr, Dissipative Solitons in Reaction-Diffusion Systems, Springer Series in
    Synergetics 70, Springer-Verlag, Berlin, 2013.
    [15] J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. I. R. E. 50 (1962), 2061-2070.
    [16] Y. Nishiura, T. Teramoto, X. Yuan and K.-I. Udea, Dynamics of traveling pulses in
    heterogeneous media, CHAOS 17(3) (2007).
    [17] C. Reinecke and G. Sweers, A positive solution on R
    n
    to a equations of FitzHughNagumo type, J. Differential Equations 153 (1999), 292-312.
    [18] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. B
    237 (1952), 37-72.
    [19] E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo
    equations, J. Math. Biol. 22 (1985), 81-104.

    QR CODE