研究生: |
何 安 Ho, An |
---|---|
論文名稱: |
活化抑制作用衍生的周期形態 Pattern formation in an activator-inhibitor system |
指導教授: |
陳兆年
Chen, Chao-Nien |
口試委員: |
陳國璋
Chen, Kuo-Chang 曾旭堯 Tzeng, Shuh-Yaur |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 變分學 、菲茨休-南雲方程 、反應擴散方程式 、週期解 、梯度下降法 |
外文關鍵詞: | Calculus of Variation, Fitzhugh-Nagumo equation, reaction-diffusion model, periodic solution, Gradient Descent Algorithm |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們感興趣的是Fitzhugh-Nagumo方程系統的週期解。首先使用變分法
證明解的存在性。同時我們也透過數值方法來觀察這些週期解的多樣性。藉由差分與
梯度下降法,這套疊代演算法可以協助我們進一步了解週期解的形態。
In this thesis, we study the pattern formation in the FitzHugh-Nagumo equations. This
is an activator-inhibitor type reaction-diffusion system and there is a variational structure
which will be used in our investigation. We show the existence of periodic solutions by using variational argument to find a minimizer. We also work on the numerical computation
on such solutions.
[1] C. -N. Chen, C, -C Chen and C. -C Huang, Traveling waves for the FitzHugh-Nagumo
system on an infinite channel, J. Differential Equations 261 (2016), 3010-3041.
[2] C. -N. Chen and Y. S. Choi, Standing pulse solutions to FitzHugh-Nagumo equations,
Arch. Rational Mech. Anal. 206 (2012), 741-777.
[3] C. -N. Chen and Y. S. Choi, Traveling pulse solutions to FitzHugh-Nagumo equations,
Calculus of Variations and Partial Differential Equations 54 (2015), 1-45.
[4] C. -N. Chen, S. -I. Ei, Y. -P Lin and S. -Y Kung, Standing waves joining with Turing
patterns in FitzHugh-Nagumo type systems, Communications in Partial Differential
Equations 36 (2011), 998-1015.
[5] C. -N. Chen and X. Hu, Maslov index for homoclinic orbits of Hamiltonian systems,
Ann. Inst. H. Poincare Anal. Non Linearie 24 (2007), 589-603.
[6] C. -N. Chen and X. Hu, Stability criteria for reaction-diffusion systems with skewgradient structure, Communications in Partial Differential Equations 33 (2008), 189-
208.
[7] C. -N. Chen and X. Hu, Stability analysis for standing pulse solutions to FitzHughNagumo equations, Calculus of Variations and Partial Differential Equations, 49
(2014), 827-845.
[8] C. -N. Chen, Shih-Yin Kung and Yoshihisa Morita, Planar standing wavefronts in
the FitzHugh-Nagumo equations, SIAM J. Math. Anal. 46 (2014), 657-690.
[9] C. -N. Chen and K. Tanaka, A variational approach for standing waves of FitzHughNagumo type systems, J. Differential Equations 257 (2014), 109-144.
[10] A. Doelman, P. van Heijster and T. Kaper, Pulse dynamics in a three-component
system: existence analysis, J. Dynam. Differential Equations 21 (2008), 73-115.
[11] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), 445-466.
[12] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current
and its application to conduction and excitation in nerve, J. Physiol. 117 (1952),
500-544.
[13] C. K. R. T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo
system, Trans. Amer. Math. Soc. 286 (1984), 431-469.
34
[14] A. W. Liehr, Dissipative Solitons in Reaction-Diffusion Systems, Springer Series in
Synergetics 70, Springer-Verlag, Berlin, 2013.
[15] J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. I. R. E. 50 (1962), 2061-2070.
[16] Y. Nishiura, T. Teramoto, X. Yuan and K.-I. Udea, Dynamics of traveling pulses in
heterogeneous media, CHAOS 17(3) (2007).
[17] C. Reinecke and G. Sweers, A positive solution on R
n
to a equations of FitzHughNagumo type, J. Differential Equations 153 (1999), 292-312.
[18] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. Lond. B
237 (1952), 37-72.
[19] E. Yanagida, Stability of fast travelling pulse solutions of the FitzHugh-Nagumo
equations, J. Math. Biol. 22 (1985), 81-104.