簡易檢索 / 詳目顯示

研究生: 溫新民
Wen, Shin-Min
論文名稱: 傷口癒合中水通道蛋白3調控細胞遷移之偵測
Detection of Cell Migration-Associated Wound Healing Regulated by Aquaporin 3
指導教授: 莊淳宇
Chuang, Chun-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 102
中文關鍵詞: 水通道蛋白肌動蛋白傷口癒合細胞遷移
外文關鍵詞: aquaporins, actin, wound healing, cell migration
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水通道蛋白(aquaporins, AQPs)是細胞膜上的通道蛋白,主要功能是傳遞水或不帶電小顆粒分子,改變細胞內的滲透壓,增加水在細胞膜通透性。在傷口癒合的過程中,AQPs會促進細胞的遷移和增生,提升傷口癒合的效果,並且藉由AQPs極化現象的形成,導致細胞內滲透壓改變,進而調控肌動蛋白(actin)的分布位置和影響重組過程中細胞特性,如細胞形態(morphology)、貼附(adhesion)和接合作用(tight junction)。本研究目的為觀察 AQP3 和 actin 對於細胞遷移和貼附之情形,並且探討傷口癒合過程中,AQP3 極化對於 actin 分布位置和重組過程之影響,建立細胞遷移的模型。
    傳統傷口癒合試驗(wound heal assay)結果發現,AQP3 受到氯化鎳抑制會影響細胞遷移,進而降低傷口癒合的能力。傷口癒合過程中,抑制 AQP3 和 actin聚合造成細胞層狀偽足(lamellipodium)消失,表示 AQP3 和 actin 聚合會調控細胞層 狀 偽 足 之 形成 , 此 與 細 胞 遷 移 與 傷 口 癒 合 有 關 。 以 免 疫 螢光 染 色(immunofluorescence)偵測 AQP3 和 actin 之分布,結果顯示在細胞遷移過程中AQP3 會均勻分布在細胞核周圍,與 actin monomers 分布在相同位置,並且 actin會持續沿著層狀偽足呈現輻射狀的聚合。當 AQP3 受到抑制而極化時,actin 呈現平行且不具方向性聚合,使得細胞延展為細長紡錘狀進而抑制細胞遷移。在電
    性量測試驗(electric cell-substrate impedance sensing, ECIS)發現,AQP3 會調控細胞層狀偽足的形成,改變細胞形態,進而影響細胞遷移。另外,可藉由阻抗值變化(± 50 ohm)偵測到 AQP3 調控細胞遷移時前進和後退的現象,以及抑制 AQP3時造成阻抗值變化量明顯降低,表示 AQP3 調控細胞形態進而影響細胞遷移、延展和貼附之情形。
    綜合以上結果,本研究推測並且建立傷口癒合之細胞遷移模型。當傷口形成時,首先 AQP3 誘發細胞形成層狀偽足,吸引 actin monomers 聚集在 APQ3 的位置,然後層狀偽足會持續延展,藉由 actin monomers 會形成 actin filaments 維持層狀偽足的構形,促進細胞遷移。經由電性量測的方式可即時偵測到 AQP3 調控此傷口癒合之過程。


    Aquaporins (AQPs)are integral membrane proteins transporting water or neutral partials in cells. AQPs have been demonstrated that facilitate epidermal cells migration and proliferation during the process of wound healing.AQPs generate wound healing via polarization and osmolarity change to regulate the distribution and remodeling of actin. This study was to observe the cell migration and adhesion regulated by AQP3 and actin, and to investigate how AQP3 conferred on the phenomenon of polarization for actin location and cell remolding in wound healing in order to establish the model of cell migration through AQP3 and actin.
    The result of traditional wound healing assay showed that AQP3 was inhibited by nickel chloride (NiCl2)resulting in impaired cell migration and wound healing. The
    polymerization of AQP3 and actin were inhibited in accompanied with no lamellipodium generation. It indicated that the polymerization of AQP3 and actin mediated lamellipodium generation to facilitate cell migration during wound healing. The immunofluorescence assay explored that AQP3 generally distributed around nuclei, and actin monomers colocalized with AQP3 distribution to polymerize radically along lamellipodium. Moreover, AQP3 deficiency interfered with polarization of AQP3, and caused the location of polymerized actin parallel and undirected. The assay of electric cell-substrate impedance sensing (ECIS) detected AQP3 mediated cell lamellipodium generation to affect cell migration and distribution resulting in impaired cell migration. Otherwise,the impedance change (± 50 ohm) was detectable in the forward and backward movement during cell migration, and the impedance was significantly decreased when AQP3 was repressed. It suggested that AQP3 mediated cell morphology for cell migration, extension and adhesion.
    Regarding the findings of this study, it speculated and established a model of cell migration during wound healing. In the process of cell migration for wound healing, AQP3 induced cells to form lamellipodium and attract actin monomers to the location of AQP3 distribution, and lamellipodium further extended and actin filaments were formed from actin monomers to maintain the shape of lamellipodium. The ECIS assay can detect in real time that AQP3 regulated cell migration for wound healing.

    目 錄 致謝…………………………………………………………………………………………………………………………. I 摘要………………………………………………………………………………………………………………………. III Abstract………………………………………………………………………………………………………………….. V 目錄……………………………………………………………………………………………………….……………. VII 圖目錄………………………………………………………………………………………………………………….. IX 表目錄……………………………………………………………………………………………………….……….. XII 第一章 前言……………………………………………………………………………………………………...….1   第一節 研究動機…………………………………………………………………………………………..1   第二節 研究目的…………………………………………………………………………………………..3 第二章 文獻回顧…………………………………………………………………………………………………..4   第一節 何謂傷口…………………………………………………………………………………………..4   第二節 傷口癒合的過程……………………………………………………………………………….5   第三節 細胞移動行為對傷口癒合的影響………………………………………………......8   第四節 水通道蛋白(aquaporins, AQPs)的特性…………………………………………..10   第五節 水通道蛋白對傷口癒合的影響……………………………………..…………......12   第六節 肌動蛋白對傷口癒合的影響………………………………………………….........14   第七節 即時細胞行為電性量測儀(electric cell-substrate impedance sensing, ECIS)之原理和應用……………………………………………………..………………15 第三章 材料與方法…………………………………………………………………………………………….19   第一節 實驗材料…………………………………………………………………………………………19   第二節 細胞培養…………………………………………………………………………………………19   第三節 細胞滲透壓的分析…………………………………………………………………..…….20   第四節 相位差顯微鏡的觀察……………………………………………………………………..21   第五節 傷口癒合分析…………………………………………………………………………………21   第六節 細胞行為分析系統(electric cell-substrate impedance sensing; ECIS)      對傷口癒合的偵測….………………………………………………………………………..22   第七節 免疫螢光染色法(immunofluorecence)………………………………………………24 第四章 結果…………….……….………………….……………………………………….…………………….25   第一節 AQP3影響細胞內外水傳遞及細胞形態……..…………………………………25   第二節 AQP3與細胞遷移有關進而影響傷口癒合……………….……………………26 第三節 酸鹼值會影響AQP3調控傷口癒合………………………….……………………27 第四節 細胞數會影響AQP3調控傷口癒合………………………………………….……27   第五節 細胞骨架actin會調控細胞的形態並且影響細胞的遷移……………….28   第六節 在傳統傷口癒合試驗發現AQP3與細胞骨架actin會互相影響…….28 第七節 免疫螢光染色試驗發現AQP3與細胞骨架actin會互相影響…….…29   第八節 電性量測試驗發現AQP3和actin會調控細胞遷移……………………….31 第五章 討論…………………………………………………………..33   第一節 氯化鎳對於AQP3功能之影響……………………………………………………….33 第二節 AQP3對傷口癒合之影響…………..………….……………………………….……...33 第三節 細胞骨架actin對傷口癒合之影響…………….………………………………… 34   第四節 AQP3與actin對於傷口癒合之影響……………………………………………… 35   第五節 AQP3和actin在NCI-H292細胞分布的情形………………………………… 36   第六節 利用電性量測探討AQP3對於傷口癒合之影響…………………………… 37 第六章 結論與建議…………………………………………………………………………………………… 39 圖表結果………………………………………………………………………………………………………………. 40 參考文獻………………………………………………………………………………………………………………. 95 圖目錄 圖1 暫時性的傷口癒合階段…………………………………….…………………………………………. 6 圖2 滲出和發炎階段…………………………………………………………………………………………… 6 圖3 增生和肉芽形成階段…………………………………………………………………………………… 7 圖4 表皮再生階段………………………………………………………………………………………………. 7 圖5 細胞遷移的示意圖…………………………………………………………………………….………. 10 圖6 AQP1單體與四聚體結構的3D示意圖……………………………………………………… 12 圖7 AQPs參與細胞遷移之機制……………………………………………………………………….. 15 圖8 細胞與電極板之間的作用力……………………………………………………………………… 16 圖9 傷口模型……………………………………………………………..……………………………………… 22 圖10 NCI-H292細胞處理氯化鎳在不同滲透壓環境之細胞形態變化……………. 40 圖11 量化NCI-H292細胞處理氯化鎳下在不同滲透壓環境之細胞形態變化… 40 圖12 量化NCI-H292細胞處理不同濃度氯化鎳在不同滲透壓環境之細胞形態 變化…….……………….……..………………………………………………………………………….… 41 圖13 NCI-H292細胞處理不同濃度氯化鎳之傷口癒合情形…………..………………. 43 圖14 量化NCI-H292細胞處理不同濃度氯化鎳之傷口癒合情形…………………… 44 圖15 不同濃度氯化鎳對傷口前緣(leading edge)細胞所造成的影響………………. 45 圖16 不同濃度氯化鎳對傷口前緣細胞所造成的影響…………………………………….. 46 圖17 氯化鎳對於細胞存活率之影響……………..……………………...………………………….47 圖18 酸鹼值對於AQP3調控傷口癒合之影響…………………………………………………. 48 圖19 量化環境中的酸鹼值對於AQP3調控傷口癒合之影響…………………………. 49 圖20 不同細胞數對於傷口癒合之影響……………………………………………………………. 51 圖21 量化不同細胞數對於傷口癒合之影響……………………………………………………. 51 圖22 氯化鎳抑制不同細胞數對於傷口癒合之影響………………………………………… 52 圖23 量化氯化鎳抑制不同細胞數對於傷口癒合之影響…………………………………. 53 圖24 不同濃度actin 抑制劑對傷口癒合之影響………………………………………………. 54 圖25 量化不同濃度latrunculin A對傷口癒合之影響………………………………………. 55 圖26 不同濃度的actin 抑制劑latrunculin A對傷口前緣細胞之影響……………… 56 圖27 NCI-H292細胞分別處理AQP3抑制劑500 μM和actin抑制劑之傷口癒合 情形………………….……..…………………………………………………………………………..….. 57 圖28 量化500 μM氯化鎳和0.04 μM latrunculin A對傷口癒合之影響…………… 58 圖29 NCI-H292細胞分別處理AQP3抑制劑1 mM和actin抑制劑之傷口癒合 情形…..…………………………………………………………………………………………………….. 59 圖30 量化1 mM氯化鎳和0.04 μM latrunculin A對傷口癒合之影響…………….… 60 圖31 氯化鎳和latrunculins A對細胞形態變化之影響……………………………………… 61 圖32 量化1 mM氯化鎳和0.04 μM latrunculin A對細胞形態變化之影響….…… 61 圖33 NCI-H292細胞在不同濃度氯化鎳和latrunculin A之傷口形成初期………. 62 圖34 NCI-H292細胞在不同濃度氯化鎳和latrunculin A之經過24小時候傷口癒 合情形………………….……..………………………………………………………………………….… 63 圖35 量化相同氯化鎳濃度下,不同濃度latrunculin A對傷口癒合之影響……… 65 圖36 量化相同latrunculin A濃度下,不同濃度氯化鎳對傷口癒合之影響……… 67 圖37 NCI-H292細胞之細胞骨架actin重組情形……………………………………………… 69 圖38 不同濃度氯化鎳影響傷口間隙(leading edge) 24小時後之actin的分布情     形…………………………………………………………………………………………..………………… 71 圖39 不同濃度氯化鎳影響傷口間隙(leading edge) 24小時後之actin和AQP3的 分布情形…………………………………………………………………………………………………. 73 圖40 不同濃度氯化鎳影響傷口間隙(leading edge) 24小時後之actin和AQP3的 分布情形之DIC影像……………………………………………………………………………… 75 圖41 不同濃度latrunculin A影響傷口間隙(leading edge) 24小時後之actin和       AQP3的分布情形…………………………………………………………………………………… 76 圖42 latrunculin A和氯化鎳影響傷口間隙(leading edge) 24小時後之actin和 AQP3的分布情形…………………………………………………………………………………… 77 圖43 不同濃度氯化鎳影響傷口間隙中央(middle edge) 24小時後之actin和 AQP3的分布情形…………………………………………………………………………………… 79 圖44 傷口癒合與細胞貼附之電性量測實驗流程圖………………………………………… 80 圖45 不同濃度氯化鎳對於傷口癒合之阻抗值變化………………………..………….…… 82 圖46 細胞長滿在量測電極上之阻抗值變化……..……………………………………..……… 83 圖47 有無氯化鎳時,電性量測分析細胞分布情形之示意圖…………………………… 84 圖48 懸浮細胞加入1 mM氯化鎳和0.04 μM latrunculin A之後,經過21小時培 養,培養過程中細胞貼附至8W1E電極之阻抗值變化………………….………… 85 圖49 懸浮細胞加入1 mM氯化鎳和0.04 μM latrunculin A之後,經過21.4小時 培養,依時間分段分析電極之阻抗值變化……………………………………………… 87 圖50 細胞貼附過程,阻抗值升降變化的次數………………………………………..………… 88 圖51 延續圖48的實驗,細胞經過21.45小時貼附之後,進行傷口癒合試驗, 經過時間從22小時至47小時………………………………………………….…..………… 89 圖52 延續圖48的實驗,細胞經過21.45小時貼附之後,進行傷口癒合試驗, 經過時間從22小時至47小時對於傷口癒合之阻抗值變化的次數………. 90 圖53 250 μM氯化鎳和0.04 μM latrunculin A對於傷口癒合之阻抗值變化….… 91 圖54 250 μM氯化鎳和0.04 μM latrunculin A對於傷口癒合之阻抗值變化的次數 …………………………………………………………………………………………………………………… 91 圖55 500 μM氯化鎳和0.04 μM latrunculin A對於傷口癒合之阻抗值變化….… 92 圖56 500 μM氯化鎳和0.04 μM latrunculin A對於傷口癒合之阻抗值變化的次數 …………………………………………………………………………………………………………………… 92 圖57 1 mM氯化鎳和0.04 μM latrunculin A對於傷口癒合之阻抗值變化…….… 93 圖58 1 mM氯化鎳和0.04 μM latrunculin A對於傷口癒合之電阻值變化的次數 ………………………………………………………………………………………………………………..… 93 圖59 有無氯化鎳時,細胞貼附在電極之示意圖……………………………………….……… 94 圖60 AQP參與細胞遷移之機制………………………………….…………………………………… 94 表目錄 表1 AQPs在不同組織的功能與表現……………………………….………………………………. 12

    參考文獻
    1. Legrand, C., et al., Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol, 1999. 146(2): p. 517-29.
    2. Coppit, G., et al., The effects of mitomycin-C and stenting on airway wound healing after laryngotracheal reconstruction in a pig model. Int J Pediatr Otorhinolaryngol, 2000. 53(2): p. 125-35.
    3. Papadopoulos, M.C., S. Saadoun, and A.S. Verkman, Aquaporins and cell migration. Pflugers Arch, 2008. 456(4): p. 693-700.
    4. McCawley, L.J., P. O'Brien, and L.G. Hudson, Epidermal growth factor (EGF)- and scatter factor/hepatocyte growth factor (SF/HGF)- mediated keratinocyte migration is coincident with induction of matrix metalloproteinase (MMP)-9. J Cell Physiol, 1998. 176(2): p. 255-65.
    5. Ji, L., J. Lim, and G. Danuser, Fluctuations of intracellular forces during cell protrusion. Nat Cell Biol, 2008. 10(12): p. 1393-400.
    6. Hara-Chikuma, M. and A.S. Verkman, Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med, 2008. 86(2): p. 221-31.
    7. Baskovich, B., et al., Wound dressing components degrade proteins detrimental to wound healing. Int Wound J, 2008. 5(4): p. 543-51.
    8. Barrientos, S., et al., Growth factors and cytokines in wound healing. Wound Repair Regen, 2008. 16(5): p. 585-601.
    9. Schultz, G.S. and A. Wysocki, Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen, 2009. 17(2): p. 153-62.
    10. Vicente-Manzanares, M., D.J. Webb, and A.R. Horwitz, Cell migration at a glance. J Cell Sci, 2005. 118(Pt 21): p. 4917-9.
    11. Herard, A.L., et al., Epithelial barrier integrity during in vitro wound repair of the airway epithelium. Am J Respir Cell Mol Biol, 1996. 15(5): p. 624-32.
    12. Keenan, K.P., J.W. Combs, and E.M. McDowell, Regeneration of hamster tracheal epithelium after mechanical injury. I. Focal lesions: quantitative morphologic study of cell proliferation. Virchows Arch B Cell Pathol Incl Mol Pathol, 1982. 41(3): p. 193-214.
    13. Etienne-Manneville, S., Polarity proteins in migration and invasion. Oncogene, 2008. 27(55): p. 6970-80.
    14. Rorth, P., Collective cell migration. Annu Rev Cell Dev Biol, 2009. 25: p. 407-29.
    15. Friedl, P. and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol, 2009. 10(7): p. 445-57.
    16. Horie, I., et al., Tumor necrosis factor-alpha decreases aquaporin-3 expression in DJM-1 keratinocytes. Biochem Biophys Res Commun, 2009. 387(3): p. 564-8.
    17. Krane, C.M., et al., Altered regulation of aquaporin gene expression in allergen and IL-13-induced mouse models of asthma. Cytokine, 2009. 46(1): p. 111-8.
    18. Loitto, V.M., T. Karlsson, and K.E. Magnusson, Water flux in cell motility: expanding the mechanisms of membrane protrusion. Cell Motil Cytoskeleton, 2009. 66(5): p. 237-47.
    19. Ji, C., et al., Curcumin attenuates EGF-induced AQP3 up-regulation and cell migration in human ovarian cancer cells. Cancer Chemother Pharmacol, 2008. 62(5): p. 857-65.
    20. Saadoun, S., et al., Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature, 2005. 434(7034): p. 786-92.
    21. Verkman, A.S., More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci, 2005. 118(Pt 15): p. 3225-32.
    22. Diez, S., et al., Subsecond reorganization of the actin network in cell motility and chemotaxis. Proc Natl Acad Sci U S A, 2005. 102(21): p. 7601-6.
    23. Small, J.V., et al., The lamellipodium: where motility begins. Trends Cell Biol, 2002. 12(3): p. 112-20.
    24. Pollard, T.D. and G.G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments. Cell, 2003. 112(4): p. 453-65.
    25. Gerisch, G. and H.U. Keller, Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. J Cell Sci, 1981. 52: p. 1-10.
    26. Gerisch, G., et al., Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored using a green fluorescent protein-coronin fusion protein. Curr Biol, 1995. 5(11): p. 1280-5.
    27. Shaw, T.J. and P. Martin, Wound repair at a glance. J Cell Sci, 2009. 122(Pt 18): p. 3209-13.
    28. Zelenina, M., et al., Copper inhibits the water and glycerol permeability of aquaporin-3. J Biol Chem, 2004. 279(50): p. 51939-43.
    29. Zelenina, M., et al., Nickel and extracellular acidification inhibit the water permeability of human aquaporin-3 in lung epithelial cells. J Biol Chem, 2003. 278(32): p. 30037-43.
    30. Ilina, O. and P. Friedl, Mechanisms of collective cell migration at a glance. J Cell Sci, 2009. 122(Pt 18): p. 3203-8.
    31. Ridley, A.J., et al., Cell migration: integrating signals from front to back. Science, 2003. 302(5651): p. 1704-9.
    32. Van Haastert, P.J. and P.N. Devreotes, Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol, 2004. 5(8): p. 626-34.
    33. Kozuka, J., et al., Dynamic polymorphism of actin as activation mechanism for cell motility. Biosystems, 2007. 88(3): p. 273-82.
    34. Fisher, C.I. and S.C. Kuo, Filament rigidity causes F-actin depletion from nonbinding surfaces. Proc Natl Acad Sci U S A, 2009. 106(1): p. 133-8.
    35. Kruse, E., N. Uehlein, and R. Kaldenhoff, The aquaporins. Genome Biol, 2006. 7(2): p. 206.
    36. Rash, J.E., et al., Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A, 1998. 95(20): p. 11981-6.
    37. Sui, H., et al., Structural basis of water-specific transport through the AQP1 water channel. Nature, 2001. 414(6866): p. 872-8.
    38. Harries, W.E., et al., The channel architecture of aquaporin 0 at a 2.2-A resolution. Proc Natl Acad Sci U S A, 2004. 101(39): p. 14045-50.
    39. Ma, T., et al., Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem, 1999. 274(29): p. 20071-4.
    40. Gresz, V., et al., Immunolocalization of AQP-5 in rat parotid and submandibular salivary glands after stimulation or inhibition of secretion in vivo. Am J Physiol Gastrointest Liver Physiol, 2004. 287(1): p. G151-61.
    41. Verkman, A.S., Applications of aquaporin inhibitors. Drug News Perspect, 2001. 14(7): p. 412-20.
    42. Castle, N.A., Aquaporins as targets for drug discovery. Drug Discov Today, 2005. 10(7): p. 485-93.
    43. Ma, T., et al., Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem, 1998. 273(8): p. 4296-9.
    44. Papadopoulos, M.C. and A.S. Verkman, Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem, 2005. 280(14): p. 13906-12.
    45. Binder, D.K., et al., Increased seizure threshold in mice lacking aquaporin-4 water channels. Neuroreport, 2004. 15(2): p. 259-62.
    46. Da, T. and A.S. Verkman, Aquaporin-4 gene disruption in mice protects against impaired retinal function and cell death after ischemia. Invest Ophthalmol Vis Sci, 2004. 45(12): p. 4477-83.
    47. Saadoun, S., et al., Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci, 2005. 118(Pt 24): p. 5691-8.
    48. Solenov, E., et al., Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol, 2004. 286(2): p. C426-32.
    49. Jaeger, M., et al., The osmotic migration of cells in a solute gradient. Biophys J, 1999. 77(3): p. 1257-67.
    50. Lim, J.H., et al., Extracellular signal-regulated kinase involvement in human astrocyte migration. Brain Res, 2007. 1164: p. 1-13.
    51. Levin, M.H. and A.S. Verkman, Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest Ophthalmol Vis Sci, 2006. 47(10): p. 4365-72.
    52. Thiagarajah, J.R., D. Zhao, and A.S. Verkman, Impaired enterocyte proliferation in aquaporin-3 deficiency in mouse models of colitis. Gut, 2007. 56(11): p. 1529-35.
    53. Crane, J.M. and A.S. Verkman, Long-range nonanomalous diffusion of quantum dot-labeled aquaporin-1 water channels in the cell plasma membrane. Biophys J, 2008. 94(2): p. 702-13.
    54. Nielsen, S., et al., Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci, 1997. 17(1): p. 171-80.
    55. Disanza, A., et al., Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci, 2005. 62(9): p. 955-70.
    56. Schwab, A., et al., Cells move when ions and water flow. Pflugers Arch, 2007. 453(4): p. 421-32.
    57. Dong, C., S. Aznavoorian, and L.A. Liotta, Two phases of pseudopod protrusion in tumor cells revealed by a micropipette. Microvasc Res, 1994. 47(1): p. 55-67.
    58. Rabinovitch, M. and M.J. DeStefano, Spontaneous migration of normal human polymorphonuclear neutrophils under agarose: enhancement by media of lowered pH or osmolality. J Reticuloendothel Soc, 1981. 29(5): p. 329-39.
    59. Charras, G.T., et al., Non-equilibration of hydrostatic pressure in blebbing cells. Nature, 2005. 435(7040): p. 365-9.
    60. Barber, M.A. and H.C. Welch, PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer, 2006. 93(5): p. E44-52.
    61. Lopez, J.I., J.K. Mouw, and V.M. Weaver, Biomechanical regulation of cell orientation and fate. Oncogene, 2008. 27(55): p. 6981-93.
    62. Nascimento, C.F., et al., Role of MMP9 on invadopodia formation in cells from adenoid cystic carcinoma. Study by laser scanning confocal microscopy. Microsc Res Tech, 2009.
    63. Ashkin, A., Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci U S A, 1997. 94(10): p. 4853-60.
    64. Nemet, B.A. and M. Cronin-Golomb, Measuring microscopic viscosity with optical tweezers as a confocal probe. Appl Opt, 2003. 42(10): p. 1820-32.
    65. Dormann, D. and C.J. Weijer, Imaging of cell migration. EMBO J, 2006. 25(15): p. 3480-93.
    66. Wegener, J., C.R. Keese, and I. Giaever, Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res, 2000. 259(1): p. 158-66.
    67. Keese, C.R., et al., Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci U S A, 2004. 101(6): p. 1554-9.
    68. Zhao, M., Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009. 20(6): p. 674-82.
    69. Earley, S. and G.E. Plopper, Disruption of focal adhesion kinase slows transendothelial migration of AU-565 breast cancer cells. Biochem Biophys Res Commun, 2006. 350(2): p. 405-12.
    70. Gorshkova, I., et al., Protein kinase C-epsilon regulates sphingosine 1-phosphate-mediated migration of human lung endothelial cells through activation of phospholipase D2, protein kinase C-zeta, and Rac1. J Biol Chem, 2008. 283(17): p. 11794-806.
    71. Balasubramanian, L., et al., Impedance analysis of renal vascular smooth muscle cells. Am J Physiol Cell Physiol, 2008. 295(4): p. C954-65.
    72. Cao, C., et al., EGFR-mediated expression of aquaporin-3 is involved in human skin fibroblast migration. Biochem J, 2006. 400(2): p. 225-34.
    73. Zelenina, M., et al., Water permeability of aquaporin-4 is decreased by protein kinase C and dopamine. Am J Physiol Renal Physiol, 2002. 283(2): p. F309-18.
    74. Giaever, I. and C.R. Keese, Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A, 1991. 88(17): p. 7896-900.
    75. Tiruppathi, C., et al., Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci U S A, 1992. 89(17): p. 7919-23.
    76. Nikula, K.J., et al., The response of the rat tracheal epithelium to ozone exposure. Injury, adaptation, and repair. Am J Pathol, 1988. 131(2): p. 373-84.
    77. Erjefalt, J.S., et al., In vivo restitution of airway epithelium. Cell Tissue Res, 1995. 281(2): p. 305-16.
    78. Mattila, P.K. and P. Lappalainen, Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol, 2008. 9(6): p. 446-54.
    79. Nejsum, L.N. and W.J. Nelson, A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J Cell Biol, 2007. 178(2): p. 323-35.
    80. Mark, S., et al., Physical model of the dynamic instability in an expanding cell culture. Biophys J, 2010. 98(3): p. 361-70.
    81. Konishi, H., et al., Latrunculin a has a strong anticancer effect in a peritoneal dissemination model of human gastric cancer in mice. Anticancer Res, 2009. 29(6): p. 2091-7.
    82. 陳宣毅,細胞爬行的物理學。 物理雙月刊,2007,29 (6): 1029-1033.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE