研究生: |
李中天 Li, Chung-Tien |
---|---|
論文名稱: |
增進(侷域性)表面電漿共振感測器在強度、波長、 相位偵測法中靈敏度之研究 Enhancing Sensing Resolution of (Localized) Surface Plasmon Resonance Sensors Implemented by Intensity, Wavelength, and Phase Interrogations |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: |
金重勳
Chin, Tsung-Shune 杜正恭 Duh, Jenq-Gong 果尚志 Gwo, Shangjr 孫啟光 Sun, Chi-Kuang 陳浩夫 Chen, How-foo |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 106 |
中文關鍵詞: | 表面電漿共振 、靈敏度 、相位偵測 、波長偵測 、強度偵測 、侷域性表面電漿共振 、生物感測器 |
外文關鍵詞: | Surface plasmon resonance, Sensitivity, Phase interrogation, Wavelength interrogation, Intensity interrogation, Localized surface plasmon resonance, biosensor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿共振為存在於金屬及介電層交界面上自由電子的集體震盪行為。由於此一共振條件為金屬及介電層之折射係數所左右,因此可利用其共振條件改變來判斷介電層之折射係數是否產生變化。更進一步來說,介電層上數十以至數百奈米的深度若有折射係數變化,便會反映在表面電漿子共振條件的改變上。考量到現今偵測系統的解析度,一般表面電漿共振所能測得的折射係數變化可輕易得達到10-6以上,因此表面電漿共振能在不需標定的情況下,立即的反映出生物分子接合的狀況。然而,對於更微量的偵測、更快速準確的檢定、更多樣性的功能、或是更低成本的追求始終是各感測平台極力企及的目標。因而在眾多研究者的努力至今,表面電漿共振感測器發展出不同的偵測方式以提供不同感測的需求。其中最常見的四種偵測方式為:角度、波長、強度、及相位偵測。
本研究關注在表面電漿共振感測器於不同偵測方式的靈敏度提昇及其潛在應用,以期能再進一步拓展表面電漿共振的應用範疇。例如,對於強度偵測此種不需複雜光路設計的高效率且廣泛應用的偵測平台,我們釐清其靈敏度與感測金屬層厚度的關係,進而推導出一條適合不同強度偵測系統的靈敏度預測公式。除此之外,我們發現靈敏度最大值的金屬厚度與一般熟知的最佳耦合金屬厚度有所落差,而此落差能由表面電漿共振的兩種損耗因子來解釋。對於相位偵測此種靈敏度極高的偵測平台,我們將之應用在侷域性表面電漿共振的量測上。侷域性表面電漿共振擁有不需耦合便能產生共振、奈米級尺度、共振型態多變等優勢,卻因靈敏度不足而有所缺憾。我們一改先前研究者在不同共振模態上的追求,利用相位偵測取代現有的波長偵測來增進其靈敏度。結果顯示,在消散波激發的情況下,相同結構的侷域性表面電漿共振能有超過八十倍的靈敏度提昇。此一研究除了證實相位偵測在侷域性表面電漿共振上的可行性之外,更補足其在靈敏度上的不足。對於波長偵測此種低成本且感測線性區大的偵測平台,我們希望能將其導入重點照護檢驗的應用上。利用銀/金雙層金屬薄膜代替常用的金膜,可以在不犧牲感測線性區的前提之下提昇約兩倍的靈敏度。此外我們更進一步改良波長偵測平台,以直接觀察反射光顏色變化代替比較共振波長變化。若然,銀/金雙層金屬薄膜在反射光顏色變化上比常用金膜能有十倍的靈敏度提昇。簡言之,我們希望藉由此篇論文研究,對於表面電漿共振感測器在不同偵測方式的應用中能有所幫助。
Surface plasmon resonance (SPR) is the collective oscillation of free electrons at the interface between metal and dielectric layers. Since the resonant condition of SPR is dominated by refractive indices of metal and dielectric layer, it is possible to distinguish the refractive index change of dielectric layer through the shifts of resonant condition. Considering the system resolution of SPR system nowadays, the sensing resolution up to 10-6 RIU (refractive index change) is available for a general SPR system. Accordingly, SPR provides a label-free platform to detect bio-interactions. However, for pursuing trace measurement, rapid detection, precise diagnosis, versatile functions, or lower cost, researchers devote themselves to develop different interrogations for diverse applications. For the most general four interrogations: angle, wavelength, intensity, and phase are well applied in current literatures.
In this study, we focus on the sensitivity enhancement and potential applications of SPR interrogated by different routes, in order to expend its applying fields. For the non-complicated and efficient sensing platform, intensity interrogation, we discussed the relation between sensitivity and thickness of metal sensing layer, and further derived a generalized sensitivity model for intensity interrogation SPR system. In addition, we found that the optimized metal thickness in intensity interrogation is different from the thickness for best coupling efficiency, which is the most commonly used in research. This difference can be explained through two damping factors in SPR. For the sophisticated and ultra-sensitive sensing platform, phase interrogation, we applied such interrogation on LSPR. LSPR is characterized by coupler-free excitation, nano-scale, and diverse resonant modes; nevertheless, its sensitivity is over 10 folds lower than SPR. In contrast with other researchers who modified the resonant modes, we used phase interrogation instead of extinction spectra to enhance the sensitivity. Our results show that the sensitivity was enhanced over 80 folds at the same LSPR structures under the near-field excitation. This study not only confirms the feasibility of exploiting LSPR by optical phase, but also complements its insufficiency on sensitivity. For the low-cost and large linear detection range sensing platform, wavelength interrogation, we expect to have the potential application on point-of-care test. We proposed a color SPR system based on wavelength interrogation, in which we directly observed the color change of reflection rather than identified the resonant wavelength through spectrometer. Moreover, by using Ag/Au bi-metallic film to replace the general used Au film, we are able to enhance the sensitivity and color contrast without losing linear detection range. In short, we hope to promote SPR sensing system through the studies on intensity, phase, and wavelength interrogations.
1. Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical magazine 4, 396-402 (1902).
2. RITCHIE, R. Plasma Losses by Fast Electrons in Thin Films. Phys Rev 106, 874-881 (1957).
3. TENG, Y. & STERN, E. Plasma Radiation From Metal Grating Surfaces. Phys Rev Lett 19, 511-& (1967).
4. STERN, E. & FERRELL, R. Surface Plasma Oscillations of a Degenerate Electron Gas. Phys Rev 120, 130-136 (1960).
5. POWELL, C. & SWAN, J. Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium. Phys Rev 118, 640-643 (1960).
6. Kretschmann, E. & Raether, H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 2135-2136 (1968).
7. OTTO, A. Excitation of Nonradiative Surface Plasma Waves in Silver by Method of Frustrated Total Reflection. Z Phys 216, 398-410 (1968).
8. AJ, B. & ARAKAWA, E. Effect of Surface-Roughness on Surface Plasmon Resonance-Absorption. J Phys Chem Solids 35, 517-520 (1974).
9. Weber, W.H., L, M.S. & Parsons, M.H. SURFACE PLASMON RESONANCE DETERMINATION OF METAL-FILM OPTICAL-CONSTANTS. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY 20, 491-491 (1975).
10. Raether, H. Influence of Roughness on Optical-Properties of Surfaces - Plasma Resonance Emission and Plasmon Dispersion-Relation. Thin Solid Films 28, 119-124 (1975).
11. Liedberg, B., Nylander, C. & Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 4, 299-304 (1983).
12. Rothenhäusler, B. & Knoll, W. Surface Plasmon Microscopy. Nature 332, 615-617 (1988).
13. Gizeli, E. & Lowe, C.R. Immunosensors. CURRENT OPINION IN BIOTECHNOLOGY 7, 66-71 (1996).
14. McDonnell, J. Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr Opin Chem Biol 5, 572-577 (2001).
15. Mie, G. Beiträge zur Optik trüber Medien. Annalen der Physik 330, 377–445 (1908).
16. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. 111, (Springer-Verlag: 1988).
17. Johnson, J.D. Classical Electrodynamics. (Wiley: 1998).
18. Maier, S.A. Plasmonics. (Springer: 2007).
19. Lirtsman, V. et al. Surface-plasmon resonance with infrared excitation: Studies of phospholipid membrane growth. J. Appl. Phys. 98, 093506 (2005).
20. PETTIT, R., SILCOX, J. & VINCENT, R. Measurement of Surface-Plasmon Dispersion in Oxidized Aluminum Films. Phys Rev B 11, 3116-3123 (1975).
21. Zacher, T. & Wischerhoff, E. Real-Time Two-Wavelength Surface Plasmon Resonance as a Tool for the Vertical Resolution of Binding Processes in Biosensing Hydrogels. Langmuir 18, 1748-1759 (2002).
22. Pendry, J.B. Negative Refraction Makes a Perfect Lens. Phys Rev Lett 85, 3966-3969 (2000).
23. Shelby, R.A. Experimental Verification of a Negative Index of Refraction. Science 292, 77-79 (2001).
24. SARID, D. Long-Range Surface-Plasma Waves on Very Thin Metal-Films. Phys Rev Lett 47, 1927-1930 (1981).
25. Lyndin, N. et al. Long-range surface plasmons in asymmetric layered metal-dielectric structures. Sensor Actuat B-Chem 54, 37-42 (1999).
26. ROCCA, M. Low-Energy Eels Investigation of Surface Electronic Excitations on Metals. Surf Sci Rep 22, 1-71 (1995).
27. INAGAKI, T., KAGAMI, K. & ARAKAWA, E. Photoacoustic Observation of Nonradiative Decay of Surface-Plasmons in Silver. Phys Rev B 24, 3644-3646 (1981).
28. KRETSCHMANN, E. Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen. Z. Physik 241, 313-324 (1971).
29. Yeatman, E. Resolution and sensitivity in surface plasmon microscopy and sensing. Biosens Bioelectron 11, 635-649 (1996).
30. Fontana, E. Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media. Appl Optics 45, 7632-7642 (2006).
31. Kim, D. Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors. Appl Optics 44, 3218-3223 (2005).
32. Kreiter, M., Mittler, S., Knoll, W. & Sambles, J. Surface plasmon-related resonances on deep and asymmetric gold gratings. Phys Rev B 65, - (2002).
33. Lezec, H. et al. Beaming light from a subwavelength aperture. Science 297, 820-822 (2002).
34. Lawrence, C., Geddes, N., Furlong, D. & Sambles, J. Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings. Biosens Bioelectron 11, 389-400 (1996).
35. Ekgasit, S., Thammacharoen, C., Yu, F. & Knoll, W. Evanescent Field in Surface Plasmon Resonance and Surface Plasmon Field-Enhanced Fluorescence Spectroscopies. Anal. Chem. 76, 2210-2219 (2004).
36. Gwon, H.R. & Lee, S.H. Spectral and Angular Responses of Surface Plasmon Resonance Based on the Kretschmann Prism Configuration. MATERIALS TRANSACTIONS 51, 1150-1155 (2010).
37. Liang, H. et al. Surface plasmon resonance instrument as a refractometer for liquids and ultrathin films. Sensor Actuat B-Chem 149, 212-220 (2010).
38. Chiang, Y. et al. Innovative antimicrobial susceptibility testing method using surface plasmon resonance. Biosens Bioelectron 24, 1905-1910 (2009).
39. Yih, J., Chien, F., Lin, C., Yau, H. & Chen, S. Angular-interrogation attenuated total reflection metrology system for plasmonic sensors. Appl Optics 44, 6155-6162 (2005).
40. Hu, W.P. et al. Immunodetection of pentamer and modified C-reactive protein using surface plasmon resonance biosensing. Biosens Bioelectron 21, 1631-1637 (2006).
41. Meyer, M.H.F., Hartmann, M. & Keusgen, M. SPR-based immunosensor for the CRP detection—A new method to detect a well known protein. Biosens Bioelectron 21, 1987-1990 (2006).
42. Yanase, Y. et al. Living cell positioning on the surface of gold film for SPR analysis. Biosens Bioelectron 23, 562-567 (2007).
43. KAWAGUCHI, T. et al. Fabrication of a novel immunosensor using functionalized self-assembled monolayer for trace level detection of TNT by surface plasmon resonance. Talanta 72, 554-560 (2007).
44. Hong, D.G., Kim, T.W., Kim, K.B., Yuk, J.S. & Ha, K.S. Development of an immunosensor with angular interrogation-based SPR spectroscopy. Meas. Sci. Technol. 18, 1367-1371 (2007).
45. Homola, J., Koudela, I. & Yee, S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensor Actuat B-Chem 54, 16-24 (1999).
46. Nenninger, G., Piliarik, M. & Homola, J. Data analysis for optical sensors based on spectroscopy of surface plasmons. Meas. Sci. Technol. 13, 2038-2046 (2002).
47. STENBERG, E., PERSSON, B., ROOS, H. & URBANICZKY, C. Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins. J Colloid Interf Sci 143, 513-526 (1991).
48. Homola, J., Yee, S.S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sensor Actuat B-Chem 54, 3-15 (1999).
49. LIEDBERG, B., NYLANDER, C. & LUNDSTROM, I. Biosensing with Surface-Plasmon Resonance - How It All Started. Biosens Bioelectron 10, R1-R9 (1995).
50. Lam, W.W., Chu, L.H., Wong, C.L. & Zhang, Y.T. A surface plasmon resonance system for the measurement of glucose in aqueous solution. Sensor Actuat B-Chem 105, 138-143 (2005).
51. Ho, H., Wu, S., Yang, M. & Cheung, A. Application of white light-emitting diode to surface plasmon resonance sensors. Sensor Actuat B-Chem 80, 89-94 (2001).
52. Akimoto, T., Sasaki, S., Ikebukuro, K. & Karube, I. Effect of incident angle of light on sensitivity and detection limit for layers of antibody with surface plasmon resonance spectroscopy. Biosens Bioelectron 15, 355-362 (2000).
53. Ziblat, R., Lirtsman, V., Davidov, D. & Aroeti, B. Infrared Surface Plasmon Resonance: A Novel Tool for Real Time Sensing of Variations in Living Cells. Biophysical Journal 90, 2592-2599 (2006).
54. Bolduc, O.R., Live, L.S. & Masson, J. High-resolution surface plasmon resonance sensors based on a dove prism. Talanta 77, 1680-1687 (2009).
55. Liu, X. et al. Wavelength-modulation surface plasmon resonance sensor. TrAC Trends in Analytical Chemistry 24, 887-893 (2005).
56. Klenkar, G. & Liedberg, B. A microarray chip for label-free detection of narcotics. Anal Bioanal Chem 391, 1679-1688 (2008).
57. Chinowsky, T.M. et al. Compact, high performance surface plasmon resonance imaging system. Biosens Bioelectron 22, 2208-2215 (2007).
58. Lee, H.J., Li, Y., Wark, A.W. & Corn, R.M. Enzymatically Amplified Surface Plasmon Resonance Imaging Detection of DNA by Exonuclease III Digestion of DNA Microarrays. Anal. Chem. 77, 5096-5100 (2005).
59. Ladd, J., Taylor, A.D., Piliarik, M., Homola, J. & Jiang, S. Hybrid Surface Platform for the Simultaneous Detection of Proteins and DNAs Using a Surface Plasmon Resonance Imaging Sensor. Anal. Chem. 80, 4231-4236 (2008).
60. Kanda, V., Kariuki, J.K., Harrison, D.J. & McDermott, M.T. Label-Free Reading of Microarray-Based Immunoassays with Surface Plasmon Resonance Imaging. Anal. Chem. 76, 7257-7262 (2004).
61. Huang, H. & Chen, Y. Label-free reading of microarray-based proteins with high throughput surface plasmon resonance imaging. Biosens Bioelectron 22, 644-648 (2006).
62. Okumura, A., Sato, Y., Kyo, M. & Kawaguchi, H. Point mutation detection with the sandwich method employing hydrogel nanospheres by the surface plasmon resonance imaging technique. Analytical Biochemistry 339, 328-337 (2005).
63. Ma, X. et al. Dynamically modulated intensity interrogation scheme using waveguide coupled surface plasmon resonance sensors. Sensors and Actuators A: Physical 157, 9-14 (2010).
64. Chou, C., Wu, H., Huang, Y., Chen, Y. & Kuo, W. Characteristics of a paired surface plasma waves biosensor. Opt Express 14, 4307-4315 (2006).
65. Kabashin, A. & Nikitin, P. Interferometer based on a surface-plasmon resonance for sensor applications. Quantum Electron+ 27, 653-654 (1997).
66. Nikitin, P., Beloglazov, A., Kochergin, V., Valeiko, M. & Ksenevich, T. Surface plasmon resonance interferometry for biological and chemical sensing. Sensor Actuat B-Chem 54, 43-50 (1999).
67. Kochergin, V., Beloglazov, A., Valeiko, M. & Nikitin, P. Phase properties of a surface-plasmon resonance from the viewpoint of sensor applications. Quantum Electron+ 28, 444-448 (1998).
68. Nelson, S., Johnston, K. & Yee, S. High sensitivity surface plasmon resonance sensor based on phase detection. Sensor Actuat B-Chem 35, 187-191 (1996).
69. Ho, H., Lam, W. & Wu, S. Surface plasmon resonance sensor based on the measurement of differential phase. Rev Sci Instrum 73, 3534-3539 (2002).
70. Huang, Y.H., Ho, H.P., Wu, S.Y. & Kong, S.K. Detecting Phase Shifts in Surface Plasmon Resonance: A Review. Advances in Optical Technologies 2012, 1-12 (2012).
71. Wang, T. & Hsieh, C. Surface plasmon resonance biosensor based on electro-optically modulated phase detection. Opt Lett 32, 2834-2836 (2007).
72. Kuo, W., Chou, C. & Wu, H. Optical heterodyne surface-plasmon resonance biosensor. Opt Lett 28, 1329-1331 (2003).
73. Shen, S., Liu, T. & Guo, J. Optical phase-shift detection of surface plasmon resonance. Appl Optics 37, 1747-1751 (1998).
74. Kruchinin, A. & Vlasov, Y. Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor. Sensor Actuat B-Chem 30, 77-80 (1996).
75. Yuan, W., Ho, H.P., Suen, Y.K., Kong, S.K. & Lin, C. Improving the sensitivity limit of surface plasmon resonance biosensors by detecting mixed interference signals. Appl Optics 46, 8068-8073 (2007).
76. Rebe Raz, S., Bremer, M.G.E.G., Giesbers, M. & Norde, W. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance. Biosens Bioelectron 24, 552-557 (2008).
77. Pyo, H., Shin, Y., Kim, M. & Yoon, H.C. Multichannel Surface Plasmon Resonance Imaging and Analysis of Micropatterned Self-Assembled Monolayers and Protein Affinity Interactions. Langmuir 21, 166-171 (2005).
78. Li, P.Y., Lin, B., Gerstenmaier, J. & Cunningham, B.T. A new method for label-free imaging of biomolecular interactions. Sensor Actuat B-Chem 99, 6-13 (2004).
79. Yuk, J.S. et al. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging. Biosens Bioelectron 21, 1521-1528 (2006).
80. Wong, C.L. et al. Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging. Biosens Bioelectron 24, 606-612 (2008).
81. Beusink, J.B., Lokate, A.M.C., Besselink, G.A.J., Pruijn, G.J.M. & Schasfoort, R.B.M. Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens Bioelectron 23, 839-844 (2008).
82. Notcovich, A.G., Zhuk, V. & Lipson, S.G. Surface plasmon resonance phase imaging. Appl. Phys. Lett. 76, 1665-1667 (2000).
83. Steiner, G. Surface plasmon resonance imaging. Anal Bioanal Chem 379, 328-331 (2004).
84. Shen, G., Han, Z., Liu, W. & Chen, Y. Color surface plasmon resonance imaging of protein microdot arrays. Chem Lett 36, 926-927 (2007).
85. Singh, B.K. & Hillier, A.C. Multicolor Surface Plasmon Resonance Imaging of Ink Jet-Printed Protein Microarrays. Anal. Chem. 79, 5124-5132 (2007).
86. Giebel, K. et al. Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophysical Journal 76, 509-516 (1999).
87. Yuk, J. et al. Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor. Proteomics 4, 3468-3476 (2004).
88. Moh, K.J., Yuan, X.-., Bu, J., Zhu, S.W. & Gao, B.Z. Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams. Opt Express 16, 20734-20741 (2008).
89. Andersson, O., Larsson, A., Ekblad, T. & Liedberg, B. Gradient Hydrogel Matrix for Microarray and Biosensor Applications: An Imaging SPR Study. Biomacromolecules 10, 142-148 (2009).
90. Ran, B. & Lipson, S. Comparison between sensitivities of phase and intensity detection in surface plasmon resonance. Opt Express 14, 5641-5650 (2006).
91. Ong, B.H., Yuan, X., Tjin, S.C., Zhang, J. & Ng, H.M. Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sensor Actuat B-Chem 114, 1028-1034 (2006).
92. Xia, L., Yin, S., Gao, H., Deng, Q. & Du, C. Sensitivity Enhancement for Surface Plasmon Resonance Imaging Biosensor by Utilizing Gold–Silver Bimetallic Film Configuration. Plasmonics 6, 245-250 (2011).
93. Wark, A.W., Lee, H.J. & Corn, R.M. Long-Range Surface Plasmon Resonance Imaging for Bioaffinity Sensors. Anal. Chem. 77, 3904-3907 (2005).
94. Nenninger, G., Tobiska, P., Homola, J. & Yee, S. Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sensor Actuat B-Chem 74, 145-151 (2001).
95. Chien, F.C. & Chen, S.J. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes. Biosens Bioelectron 20, 633-642 (2004).
96. He, L., Smith, E.A., Natan, M.J. & Keating, C.D. The Distance-Dependence of Colloidal Au-Amplified Surface Plasmon Resonance. J Phys Chem B 108, 10973-10980 (2004).
97. KUME, T., NAKAGAWA, N., HAYASHI, S. & YAMAMOTO, K. Interaction Between Localized and Propagating Surface-Plasmons - Ag Fine Particles on Al Surface. Solid State Commun 93, 171-175 (1995).
98. Byun, K.M., Yoon, S.J., Kim, D. & Kim, S.J. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt Lett 32, 1902-1904 (2007).
99. Yu, F. et al. Simultaneous Excitation of Propagating and Localized Surface Plasmon Resonance in Nanoporous Gold Membranes. Anal. Chem. 78, 7346-7350 (2006).
100. Scarano, S., Mascini, M., Turner, A.P.F. & Minunni, M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25, 957-966 (2010).
101. Zeman, E.J. & Schatz, G.C. An Accurate Electromagnetic Theory Study of Surface Enhancement Factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd. Journal of Physical Cheminstry 91, 634-643 (1987).
102. Hillenbrand, R. & Keilmann, F. Complex optical constants on a subwavelength scale. Phys Rev Lett 85, 3029-3032 (2000).
103. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters. (Springer-Verlag: 1995).
104. Kuwata, H., Tamaru, H., Esumi, K. & Miyano, K. Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation. Appl. Phys. Lett. 83, 4625-4627 (2003).
105. WOKAUN, A., GORDON, J. & LIAO, P. Radiation Damping in Surface-Enhanced Raman-Scattering. Phys Rev Lett 48, 957-960 (1982).
106. Klar, T. et al. Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80, 4249-4252 (1998).
107. Chu, M. et al. Probing Bright and Dark Surface-Plasmon Modes in Individual and Coupled Noble Metal Nanoparticles Using an Electron Beam. Nano Lett 9, 399-404 (2009).
108. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3, 348-353 (2007).
109. Schaffer, B., Hohenester, U., Trügler, A. & Hofer, F. High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy. Phys Rev B 79, (2009).
110. Sigle, W., Nelayah, J., Koch, C.T. & van Aken, P.A. Electron energy losses in Ag nanoholes-from localized surface plasmon resonances to rings of fire. Opt Lett 34, 2150-2152 (2009).
111. Bosman, M., Keast, V.J., Watanabe, M., Maaroof, A.I. & Cortie, M.B. Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007).
112. Kuttge, M. et al. Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy. Appl. Phys. Lett. 93, 113110 (2008).
113. Yamamoto, N., Araya, K. & García de Abajo, F. Photon emission from silver particles induced by a high-energy electron beam. Phys Rev B 64, (2001).
114. Yamamoto, N., Araya, K., Toda, A. & Sugiyama, H. Light emission from surfaces, thin films and particles induced by high-energy electron beam. Surf Interface Anal 31, 79-86 (2001).
115. Yun-Chorng Chang, Hsueh-Wei Chen & Shih-Hui Chang Enhanced Near-Field Imaging Contrasts of Silver Nanoparticles by Localized Surface Plasmon. IEEE J. Select. Topics Quantum Electron. 14, 1536-1539
116. Rang, M. et al. Optical Near-Field Mapping of Plasmonic Nanoprisms. Nano Lett 8, 3357-3363 (2008).
117. Nicewarner-Pena, S.R. Submicrometer Metallic Barcodes. Science 294, 137-141 (2001).
118. El-Sayed, I., Huang, X. & El-Sayed, M. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett 5, 829-834 (2005).
119. Huang, X., El-Sayed, I.H., Qian, W. & El-Sayed, M.A. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J Am Chem Soc 128, 2115-2120 (2006).
120. Mock, J., Smith, D. & Schultz, S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3, 485-491 (2003).
121. McFarland, A. & Van Duyne, R. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3, 1057-1062 (2003).
122. Su, K. et al. Raman Enhancement Factor of a Single Tunable Nanoplasmonic Resonator. J Phys Chem B 110, 3964-3968 (2006).
123. Wei, Q.H., Su, K.H., Durant, S. & Zhang, X. Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains. Nano Lett 4, 1067-1071 (2004).
124. Su, K. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3, 1087-1090 (2003).
125. Sonnichsen, C. et al. Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 77, 2949-2951 (2000).
126. Raschke, G. et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 3, 935-938 (2003).
127. Quinten, M., Pack, A. & Wannemacher, R. Scattering and extinction of evanescent waves by small particles. Appl Phys B-Lasers O 68, 87-92 (1999).
128. Sweatlock, L., Maier, S., Atwater, H., Penninkhof, J. & Polman, A. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Phys Rev B 71, - (2005).
129. Jain, P.K., Huang, W. & El-Sayed, M.A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett 7, 2080-2088 (2007).
130. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt Commun 220, 137-141 (2003).
131. Sönnichsen, C., Reinhard, B.M., Liphardt, J. & Alivisatos, A.P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23, 741-745 (2005).
132. Auguie, B. & Barnes, W. Collective Resonances in Gold Nanoparticle Arrays. Phys Rev Lett 101, (2008).
133. Auguie, B. & Barnes, W.L. Diffractive coupling in gold nanoparticle arrays and the effect of disorder. Opt Lett 34, 401-403 (2009).
134. Chu, Y., Schonbrun, E., Yang, T. & Crozier, K.B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 93, 181108 (2008).
135. Hicks, E.M. et al. Controlling Plasmon Line Shapes through Diffractive Coupling in Linear Arrays of Cylindrical Nanoparticles Fabricated by Electron Beam Lithography. Nano Lett 5, 1065-1070 (2005).
136. Linden, S., Kuhl, J. & Giessen, H. Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction. Phys Rev Lett 86, 4688-4691 (2001).
137. Giannini, V., Fernández-Domínguez, A.I., Heck, S.C. & Maier, S.A. Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chem Rev 111, 3888-3912 (2011).
138. Sonnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88, - (2002).
139. Haes, A., Zou, S., Schatz, G. & Van Duyne, R. Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108, 6961-6968 (2004).
140. Halas, N.J., Lal, S., Chang, W., Link, S. & Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chem Rev 111, 3913-3961 (2011).
141. Hao, E. & Schatz, G. Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120, 357-366 (2004).
142. Aćimović, S.S., Kreuzer, M.P., González, M.U. & Quidant, R. Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing. Acs Nano 3, 1231-1237 (2009).
143. Beermann, J., Novikov, S.M., Leosson, K. & Bozhevolnyi, S.I. Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles. Opt Express 17, 12698-12705 (2009).
144. Felidj, N. et al. Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 82, 3095-3097 (2003).
145. Kundu, J., Le, F., Nordlander, P. & Halas, N.J. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem Phys Lett 452, 115-119 (2008).
146. Le, F. et al. Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. Acs Nano 2, 707-718 (2008).
147. Loo, C., Lowery, A., Halas, N., West, J. & Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5, 709-711 (2005).
148. Zharov, V., Galitovskaya, E., Johnson, C. & Kelly, T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Laser Surg Med 37, 219-226 (2005).
149. Quidant, R., Petrov, D. & Badenes, G. Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field. Opt Lett 30, 1009-1011 (2005).
150. Righini, M. et al. Nano-optical Trapping of Rayleigh Particles and Escherichia coliBacteria with Resonant Optical Antennas. Nano Lett 9, 3387-3391 (2009).
151. Grigorenko, A.N., Roberts, N.W., Dickinson, M.R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon 2, 365-370 (2008).
152. Wu, C.H. Metallic arrays of localized surface plasmon resonance images patterened by nanosphere lithography processes. National Tsing Hua University-Master Thesis 1-80 (2009).
153. Pakizeh, T., Langhammer, C., Zoric, I., Apell, P. & Kall, M. Intrinsic Fano Interference of Localized Plasmons in Pd Nanoparticles. Nano Lett 9, 882-886 (2009).
154. Anker, J.N. et al. Biosensing with plasmonic nanosensors. Nat Mater 7, 442-453 (2008).
155. Prodan, E. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 302, 419-422 (2003).
156. Zijlstra, P., Chon, J.W.M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410-413 (2009).
157. Larsson, E.M., Langhammer, C., Zoric, I. & Kasemo, B. Nanoplasmonic Probes of Catalytic Reactions. Science 326, 1091-1094 (2009).
158. Wang, X. et al. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens Bioelectron 26, 404-410 (2010).
159. Teichroeb, J.H., Forrest, J.A. & Jones, L.W. Size-dependent denaturing kinetics of bovine serum albumin adsorbed onto gold nanospheres. Eur. Phys. J. E 26, 411-415 (2008).
160. Serra, A. et al. Non-functionalized silver nanoparticles for a localized surface plasmon resonance-based glucose sensor. Nanotechnology 20, 165501 (2009).
161. Haes, A.J., Chang, L., Klein, W.L. & Van Duyne, R.P. Detection of a Biomarker for Alzheimer's Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor. J Am Chem Soc 127, 2264-2271 (2005).
162. Zhang, J., Atay, T. & Nurmikko, A.V. Optical Detection of Brain Cell Activity Using Plasmonic Gold Nanoparticles. Nano Lett 9, 519-524 (2009).
163. Yonzon, C.R. et al. A Comparative Analysis of Localized and Propagating Surface Plasmon Resonance Sensors: The Binding of Concanavalin A to a Monosaccharide Functionalized Self-Assembled Monolayer. J Am Chem Soc 126, 12669-12676 (2004).
164. Nusz, G.J. et al. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal. Chem. 80, 984-989 (2008).
165. Sherry, L. et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5, 2034-2038 (2005).
166. Lee, K.J., Nallathamby, P.D., Browning, L.M., Osgood, C.J. & Xu, X.N. In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos. Acs Nano 1, 133-143 (2007).
167. Choi, Y., Park, Y., Kang, T. & Lee, L.P. Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotechnol 4, 742-746 (2009).
168. Endo, T. et al. Multiple Label-Free Detection of Antigen−Antibody Reaction Using Localized Surface Plasmon Resonance-Based Core−Shell Structured Nanoparticle Layer Nanochip. Anal. Chem. 78, 6465-6475 (2006).
169. Woo, J., Lim, D. & Nam, J. Minimally Stable Nanoparticle-Based Colorimetric Assay for Simple, Rapid, and Sensitive Antibody Structure and Activity Evaluation. Small 7, 648-655 (2011).
170. Huang, H. et al. A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance. Biosens Bioelectron 24, 2255-2259 (2009).
171. Miller, M. & Lazarides, A. Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering. J Opt a-Pure Appl Op 8, S239-S249 (2006).
172. Lee, K. & El-Sayed, M.A. Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. J Phys Chem B 110, 19220-19225 (2006).
173. Kabashin, A.V. et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater 8, 867-871 (2009).
174. Stewart, M.E. et al. Nanostructured plasmonic sensors. Chem Rev 108, 494-521 (2008).
175. Larsson, E.M., Alegret, J., Kall, M. & Sutherland, D.S. Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors. Nano Lett 7, 1256-1263 (2007).
176. Verellen, N. et al. Plasmon Line Shaping Using Nanocrosses for High Sensitivity Localized Surface Plasmon Resonance Sensing. Nano Lett 11, 391-397 (2011).
177. Bukasov, R. & Shumaker-Parry, J.S. Highly Tunable Infrared Extinction Properties of Gold Nanocrescents. Nano Lett 7, 1113-1118 (2007).
178. Wong, C.L. et al. Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging. Appl Optics 46, 2325-2332 (2007).
179. Ananthanawat, C., Hoven, V.P., Vilaivan, T. & Su, X. Surface plasmon resonance study of PNA interactions with double-stranded DNA. Biosens Bioelectron 26, 1918-1923 (2011).
180. Gupta, G. et al. Supersensitive detection of T-2 toxin by the in situ synthesized π-conjugated molecularly imprinted nanopatterns. An in situ investigation by surface plasmon resonance combined with electrochemistry. Biosens Bioelectron 26, 2534-2540 (2011).
181. ndez, F.T.F. et al. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens Bioelectron 26, 1231-1238 (2010).
182. Puttharugsa, C. et al. Development of surface plasmon resonance imaging for detection of Acidovorax avenae subsp. citrulli (Aac) using specific monoclonal antibody. Biosens Bioelectron 26, 2341-2346 (2011).
183. Malic, L., Cui, B., Veres, T. & Tabrizian, M. Enhanced surface plasmon resonance imaging detection of DNA hybridization an periodic gold nanoposts. Opt Lett 32, 3092-3094 (2007).
184. Wagner, D.S. et al. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials 31, 7567-7574 (2010).
185. Noginov, M.A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110-1112 (2009).
186. Ziegler, C. Cantilever-based biosensors. Anal Bioanal Chem 379, (2004).
187. Langhammer, C., Yuan, Z., Zoric, I. & Kasemo, B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett 6, 833-838 (2006).
188. Brennan, D., Justice, J., Corbett, B., McCarthy, T. & Galvin, P. Emerging optofluidic technologies for point-of-care genetic analysis systems: a review. Anal Bioanal Chem 395, 621-636 (2009).
189. Nelson, K.E., Foley, J.O. & Yager, P. Concentration Gradient Immunoassay. 1. An Immunoassay Based on Interdiffusion and Surface Binding in a Microchannel. Anal. Chem. 79, 3542-3548 (2007).
190. Skottrup, P.D., Nicolaisen, M. & Justesen, A.F. Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24, 339-348 (2008).
191. Treviño, J., Calle, A., Rodríguez-Frade, J.M., Mellado, M. & Lechuga, L.M. Single- and multi-analyte determination of gonadotropic hormones in urine by Surface Plasmon Resonance immunoassay. Analytica Chimica Acta 647, 202-209 (2009).
192. O'Brien, M., Perez-Luna, V., Brueck, S. & Lopez, G. A surface plasmon resonance array biosensor based on spectroscopic imaging. Biosens Bioelectron 16, 97-108 (2001).
193. Otsuki, S., Tamada, K. & Wakida, S. Wavelength-scanning surface plasmon resonance imaging. Appl Optics 44, 3468-3472 (2005).
194. Choi, S.H. & Byun, K.M. Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection. J Opt Soc Am a 27, 2229-2236 (2010).
195. Chen, Y. et al. Bimetallic chips for a surface plasmon resonance instrument. Appl Optics 50, 387-391 (2011).
196. Zhai, P., Guo, J., Xiang, J. & Zhou, F. Electrochemical Surface Plasmon Resonance Spectroscopy at Bilayered Silver/Gold Films. J Phys Chem C 111, 981-986 (2007).
197. Yuk, J.S., MacCraith, B.D. & McDonagh, C. Signal enhancement of surface plasmon-coupled emission (SPCE) with the evanescent field of surface plasmons on a bimetallic paraboloid biochip. Biosens Bioelectron 26, 3213-3218 (2011).
198. Lyon, L.A., Musick, M.D. & Natan, M.J. Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing. Anal. Chem. 70, 5177-5183 (1998).
199. Hutter, E. et al. Role of Substrate Metal in Gold Nanoparticle Enhanced Surface Plasmon Resonance Imaging. J Phys Chem B 105, 8-12 (2001).
200. Yang, X., Wang, Q., Wang, K., Tan, W. & Li, H. Enhanced surface plasmon resonance with the modified catalytic growth of Au nanoparticles. Biosens Bioelectron 22, 1106-1110 (2007).
201. Gong, C.C. Innovative surface plasmon resonance biosensor employing dual-parabolic mirror configuration. (National Yang Ming University-Master Thesis: 2008).
202. Hsu, W.C. Development of surface plasmon resonance biosensor with large dynamic range based on phase detection. (National Yang Ming University-Master Thesis: 2008).
203. Johnson, P.B. & Christy, R.W. Optical Constants of the Noble Metal. Phys Rev B 6, 4370-4379 (1972).
204. http://www.luxpop.com/.
205. Klein, M.V. & Furtak, T.E. Optics. (John Wiley & Sons, Inc.: New York, 2012).
206. MAIER, J., WALKER, S., FANTINI, S., FRANCESCHINI, M. & GRATTON, E. Possible Correlation Between Blood-Glucose Concentration and the Reduced Scattering Coefficient of Tissues in the Near-Infrared. Opt Lett 19, 2062-2064 (1994).
207. http://www.piramoon.com/sucrose.php.
208. Boudarham, G. et al. Spectral Imaging of Individual Split-Ring Resonators. Phys Rev Lett 105, (2010).
209. Myroshnychenko, V. et al. Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method. Adv. Mater. 20, 4288-4293 (2008).
210. Steshenko, S., Capolino, F., Alitalo, P. & Tretyakov, S. Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres. Phys. Rev. E 84, (2011).
211. Jensen, T.R., Schatz, G.C. & Van Duyne, R.P. Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling. J Phys Chem B 103, 2394-2401 (1999).
212. Chen, S., Chien, F., Lin, G. & Lee, K. Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles. Opt Lett 29, 1390-1392 (2004).
213. Kim, D. Springer Series on Chemical Sensors and Biosensors. 7, 181-207 (Springer Berlin Heidelberg: Berlin, Heidelberg, 2009).
214. Christ, A. et al. Optical properties of planar metallic photonic crystal structures: Experiment and theory. Phys Rev B 70, (2004).
215. Christ, A., Tikhodeev, S., Gippius, N., Kuhl, J. & Giessen, H. Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab. Phys Rev Lett 91, (2003).
216. luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9, 707-715 (2010).
217. Dai, W. & Soukoulis, C. Theoretical analysis of the surface wave along a metal-dielectric interface. Phys Rev B 80, (2009).
218. EHLER, T. & NOE, L. Surface-Plasmon Studies of Thin Silver/Gold Bimetallic Films. Langmuir 11, 4177-4179 (1995).
219. Jung, L., Campbell, C., Chinowsky, T., Mar, M. & Yee, S. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14, 5636-5648 (1998).
220. Busse, S., Scheumann, V., Menges, B. & Mittler, S. Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosens Bioelectron 17, 704-710 (2002).
221. SATO, Y., SATO, K., HOSOKAWA, K. & MAEDA, M. Surface plasmon resonance imaging on a microchip for detection of DNA-modified gold nanoparticles deposited onto the surface in a non-cross-linking configuration. Analytical Biochemistry 355, 125-131 (2006).