研究生: |
黃小倩 Huang, Hsiao-Chien |
---|---|
論文名稱: |
單一金奈米線化學感測器分子吸附動力學與高溫退火影響之研究 Molecular Adsorption Kinetics of a Single Gold Nanowire Chemical Sensor and the Effects of Thermal Annealing |
指導教授: |
林鶴南
Lin, Heh-Nan |
口試委員: |
李紫原
裘性天 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 金奈米線 、化學吸附 、動力學 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗結合原子力顯微術奈米微影及傳統黃光微影,製作單根金奈米線及鈦電極,而成為電阻式單一奈米線化學感測器。感測實驗在液態酒精溶液進行,研究硫醇分子在金奈米線之化學吸附動力學,並研究不同厚度金奈米線,在硫醇分子吸附後,電阻上升值與吸附常數 對厚度之關係。最後利用退火金奈米線,研究退火對其對化學吸附飽和電阻上升的影響。
所製作之金奈米線長為10微米,寬約為70 ~ 100奈米。在厚度於5 ~ 46奈米間,我們發現其飽和電阻上升值與厚度之關係,可以一個8%常數值加上指數函數來描述,而厚度5奈米的金奈米線,其平均飽和電阻上升值可達到27 %。進一步利用一階Langmuir 公式分析吸附動力學,也發現吸附常數隨著厚度上升而上升。
利用退火後的金奈米線做硫醇分子吸附實驗,則發現其飽和電阻上升值比同厚度、未退火的金奈米線增加約11% 到 47%,此結果與文獻記載表面粗糙度與化學吸附的飽和電阻上升成正比相符合,此乃因為退火後的奈米線具有較大表面粗糙度,提供更多可供硫醇分子吸附的位置,所以飽和電阻值較大。
In this work, we have fabricated a resistive-type single nanowire chemical sensor based on a single gold nanowire connected with titanium electrodes by a combination of atomic force microscopy nanolithography and conventional photolithography. In-situ measurement of the resistance increase of the gold nanowire due to the chemical adsorption of alkanethiolate molecules onto the nanowire in alcohol has been conducted. The effect of gold nanowire thickness on resistance increase upon chemisorptions has been studied. Furthermore, the effect of thermal annealing of the nanowire on the resistance increase upon chemisorption has also been investigated. The fabricated gold nanowires have a length of 10 μm and widths of 70 to 100 nm. With a nanowire thickness range of 5 to 46 nm, it is found that the relationship between the resistance increase and the nanowire thickness can be roughly described by a constant plus an exponential decay with the constant equal to around 8%. A resistance increase as high as 27% has been obtained from a 5 nm thick nanowire. Furthermore, the adsorption kinetics has been analyzed and can be well-described by a first order Langmuir equation. The adsorption constant obskincreases with increasing thickness as well. For the effect of thermal annealing on the resistance increase after chemisorption, it is found that resistance increases of annealed gold nanowires after chemisorptions are about 11% to 47% higher than those without annealing at the same thickness. This result is consistent with reports in the literature that the resistance increase is proportional to the surface roughness. As the thermal annealing increases the surface roughness of a nanowire, more adsorption sites are available and consequently the resistance increase is higher.
[1]Weinheim K. A. Chem. Eur. J. 2007, 13, 8376 – 8388
[2]Schneider T. W.; Buttry D. A. J. Am. Chem. Soc 1993, 115, 12391−12397.
[3]Wang J.; Frostman L. M.; Ward M. D. J. Phys. Chem. 1992, 96, 5224−5228.
[4]Desikan R.; Lee I.; Thundat T. Ultramicroscopy 2006, 106, 795–799
[5]Hu Z.; Thundat T.; Warmack R. J. J. Appl. Phys. 2001, 90, 427-431
[6]Gimzewski J. K.; Gerber C.; Meyer E.; Schlittler R. R. Chem. Phys. Lett. 1994, 217, 589-594
[7]Thundat T.; Warmack R. J.; Chen G. Y.; Allison D. P. Appl. Phys. Lett. 1994, 64, 2894-2896
[8]Chen G. Y.; Thundat T.; Wachter E. A.; Warmack R. J. Appl. Phys. Lett. 1995, 77 , 3618-3622
[9]Pan W.; Durning C. J.; Turro N. J. Langmuir 1996, 12, 4469-4473
[10]Rahn J. R.; Hallock R. B. Langmuir 1995, 11, 650−654.
[11]Bryant M. A.; Pemberton J. E. J. Am. Chem. Soc. 1991, 113, 8284−8293.
[12]Byahut S.; Furtak T. E. Rev. Sci. Instrum. 1990, 61, 27−32.
[13]Terrettaz S.; Stora T.; Duschl C.; Vogel H. Langmuir 1993, 9, 1361−69.
[14]Futamata M.; Borthen P.; Thomassen J.; Schumacker D.; Otto A. Appl. Spectrosc. 1994, 48, 252−260
[15]Fuchs K. Math. Proce. of Cambri. Philo. Soc. 1938, 34, 100-108
[16]Sondheimer E. H. Adv. in Phys. 1952, 1, 1-42
[17]Durkan C.; Welland W. E. Physical Review B 2000, 20, 14215-14218
[18]Persson B. N. J. J. Phys. C 1978, 11, 4251-4269
[19]Persson B. N. J. J. Chem. Phys. 1993, 98, 1659-1672
[20]Cabrera A. L.; Aguayo-Soto R. Catalysis Letters 1997, 45, 79-83
[21]Zhang Y.; Terrill R. H.; Bohn P. W. Chem. Mater. 1999, 11, 2191-2198
[22]Zhang Y.; Terrill R. H.; Bohn P. W. J. Am. Chem. Soc. 1998, 120, 9969-9970
[23]Zelenay P.; Rice-Jackson L. M.; Wieckowski A. Langmuir 1990, 6, 974−979.
[24]Shi P.; Zhang J.-Y.; Lin H.-Y.; Bohn P. W. Small 2010, 6, 22, 2598–2603
[25]Liu Z.; Searson P. C. J. Phys. Chem. B 2006, 110, 4318-4322
[26]Lin, H.-Y.; Chen, H.-A.; Lin, H.-N. Anal. Chem. 2008, 80, 1937−1941.
[27]Schlenoff J. B.; Li M.; Ly H. J. Am. Chem. Soc. 1995, 117, 12528–12536
[28]Desikan R.; Armel S.; Meyer H. M.; Thundat T. Nanotechnology 2007, 18, 424028
[29]Zhang Y.; Terrill R. H.; Tanzer T. A.; Bohn P. W. J. Am. Chem. Soc. 1998, 120, 2654-2655
[30]Mayadas A.F.; J. Appl. Phys. 1968, 39, 4241-4245
[31]Mayadas A.F.; Phys. Rev. B 1970, 4, 1382–1389
[32]Xiang C.; Kung S.-C.; Taggart D.-K.; Yang F.; Thompson M. A.; Yang Y.; Penner R. M. ACS Nano 2008, 2, 1939–1949
[33]Steinhögl W.; Schindler G.; Steinlesberger G.; Engelhardt M. Physical Review B 2002, 66, 075414-1-075414-4
[34]Rossnagel S. M.; Kuan T. S. J. Vac. Sci. & Tech. B 2004, 22 , 240
[35]Huang Q.-J.; Lilley C. M.; Bode M.; Divan R. J. Appl. Phy. 2008, 104, 023709-1-023709-6
[36]Wu W.; Brongersma S. H.; Hove M. V.; Maex K. Appl. Phys. Lett. 2004, 84, 2838-2841
[37]Alexander B.; Bruno M. Appl. Phys. Lett. 2002, 80, 3346
[38]Chen Y.-J.; Hsu J.-H.; Lin H.-N. Nanotechnology 2005, 16, 1112–1115
[39]Vancea J.; Reiss G.; Hoffmann H. Phys. Rev. B 1986, 12, 6435–6437
[40]Fried G. A.; Zhang Y.; Bohn P. W. Thin Solid Films 2001, 401, 171–178
[41]Durkan C.; Welland W. E. Ultramicroscopy 2000, 82, 125-133