簡易檢索 / 詳目顯示

研究生: 黃政德
Cheng-Te Huang
論文名稱: 以EHD技術增加LED散熱效率之研究
Investigation of LED Heat Transfer Enhancement by EHD Technology
指導教授: 許文震
Wen-Jenn Sheu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 123
中文關鍵詞: 電液動力學電暈氣流增強對流
外文關鍵詞: electrohydrodynamics, corona wind, enhanced convection
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白光LED是一種節約能源的環保照明光源,比起傳統照明光源具有省電及壽命長等優點,但使用在室內照明,因為亮度增加使得LED的發熱功率逐漸升高,傳統被動式散熱法如自然對流已無法適用於高亮度LED,因此散熱問題尚待解決。本文以LED散熱為出發點,使用主動式散熱法,利用EHD技術所產生的電暈氣流,來增強散熱鰭片的對流效果,提高熱傳能力。在本文中EHD電極型式為平行線狀電極,在各種不同條件下外加直流高壓電場來觀察其熱傳效果。實驗結果顯示,在直流電壓1 ~ 16 kV的實驗範圍內,對流係數可提升為自然對流時的1.6至3倍。另外,熱傳效果的改善幅度與供給的電壓強度成正比,與加熱面的發熱量成反比。而電場極性也會影響EHD的性能,負電場所提升的電流比正電場還要高,熱傳效果約比正電場高6 %。以本文的結果來看,消耗功率甚小的EHD確實對於熱傳能力有顯著的改善,雖比不上風扇散熱能力,但在無法使用動件的電子散熱系統中,已能夠發揮不錯的冷卻效果。


    The technology of Light Emitting Diodes (LEDs) has rapidly developed in recent years from indicators to illumination applications. With the features of long-term reliability, environmental friendliness and low power consumption, the white light LED is viewed as a promising alternative for future lighting products. Nevertheless, the rate of heat generation increases with the illumination intensity. This issue will become a challenge for thermal engineers to design the indoor LED illumination. Conventionally a passive cooling method like natural convection from heat sinks is no longer adequate for today’s high brightness of LEDs. To solve the thermal problems of LED, the electrohydrodynamics (EHD) technique is utilized to enhance the heat transfer from the heat sinks in the present study. The electric field is generated by parallel wire electrodes with different arrangements charged with DC high voltage. It is found that the heat transfer coefficients under electric fields are greater than those under natural convection by 1.6 ~ 3 times in the test range of 1 ~ 16 kV. Besides, the enhancement of heat transfer increases with the supplied voltage but decreases with raising the Rayleigh number. In addition to the supplied voltage, the electrode polarity also influences the performance of EHD. The negative polarity slightly outperforms the positive one by 6% due to its higher current density between the electrodes and the grounded surface. In the present study, EHD has been proven as a good cooling technique by showing improved heat transfer at the expense of small power consumption.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1 - 1 前言 1 1 - 2 LED原理介紹 2 1 - 3 白光LED 4 1 - 3 - 1 白光LED發光技術 5 1 - 3 - 2 白光LED散熱問題 6 1 - 3 - 3 LED現階段散熱技術 7 第二章 原理介紹與文獻回顧 16 2 - 1 LED之熱阻 16 2 - 2 LED之冷卻系統 17 2 - 3 EHD技術介紹 19 2 - 3 - 1 EHD原理簡介 20 2 - 3 - 2 電暈氣流 21 2 - 4 EHD文獻回顧 31 2 - 4 - 1 電暈現象方面 31 2 - 4 - 2 EHD散熱方面 31 第三章 實驗設備與方法 43 3 - 1 實驗設備 43 3 - 2 實驗與分析方法 44 3 - 2 - 1 熱電偶之校正 44 3 - 2 - 2 自然對流部分 45 3 - 2 - 3 外加電極部分 49 第四章 實驗結果與討論 66 4 - 1 自然對流部分 66 4 - 2 外加電極部分 69 4 - 2 - 1 電壓高低對EHD之影響 69 4 - 2 - 2 電場極性對EHD之影響 69 4 - 2 - 3 發熱通量高低對EHD之影響 72 4 - 2 - 4 電極距離對EHD之影響 74 4 - 2 - 5 電極間距對EHD之影響 75 4 - 2 - 6 電極架設方式對EHD之影響 77 4 - 2 - 7 電暈氣流之流場觀測紀錄 79 第五章 結論與未來研究方向 100 5 - 1 結論 100 5 - 2 未來研究方向 103 第六章 附錄 105 第七章 參考資料 116

    1. 財團法人光電科技工業協進會,2002/07,http://www.pida.org.tw/welcome.asp

    2. PN二極體簡介,http://ezphysics.nchu.edu.tw/prophys/electron/

    3. 工業技術研究院光電工業研究所,http://www.oes.itri.org.tw/index.html

    4. 劉如熹,王健源,2001,“白光發光二極體製作技術”,全華書局。

    5. Lumileds product application brief AB05 “Luxeon Custom Design Guide,” http://www.lumileds.com/solutions

    6. Osram product application note “Thermal Management of Golden Dragon LED,”
    http://www.osram.convergy.de/scripts/appnotes_matchlist.asp

    7. Robert S. Metz, E. Setauket, N.Y., Dec. 22, 1992, “Heat-Dissipating Method and Device for LED Display”, United States Patent 5,173,839.

    8. Peter A. Hochstein, Troy, Mich., Apr. 4, 2000, “LED Lamp Assembly with Means to Conduct Heat Away from the LEDs”, United States Patent 6,045,240.

    9. Peter A. Hochstein, Troy, Mich., Feb. 11, 2003, “LED Intergrated Heat Sink”, United States Patent 6,517,218 B2.

    10. Lumileds product application brief AB23 “Thermal Design Considerations for Luxeon 5 Watt Power Light Sources,” http://www.lumileds.com/pdfs/protected/AB23.PDF

    11. Opto Technology, Inc. heat sink datasheets, http://www.optotech.com/thermalandelectronics%20pg.htm

    12. M. Arik, J. Petroski, S. Weaver, 2002/04, “Thermal Challenges in the Future Generation Solid State Lighting Application: Light Emitting Diodes,” GE Global Research Technical Information Series.

    13. D. A. Nelson, E. J. Shaughnessy, 1986, “Electric Field Effects on Natural Convection in Enclosures,” ASME Journal of Heat Transfer, Vol. 108, pp. 749-754.

    14. M. M. Ohadi, J. Darabi, B. Roget, “Electrode Design, Fabrication, and Materials Science for EHD-Enhanced Heat and Mass Transfer,” Annual Review of Heat Transfer, Vol.10, Begell House, Inc.

    15. A. Yabe, 1991, “Active Heat Transfer Enhancement by Applying Electric Fields,” ASME/JSME Thermal Engineering Proceedings Vol. 3: XV-XXIII ASME.

    16. F. Hauksbee, 1719, “Physico-Mechnical Experiments on Various Subjects,” 1st ed., London, pp. 46-47.

    17. O. M. Steutzer, 1959, “Ion Drag Pressure Generation,” J. Appl. Phys., Vol. 30, pp. 984-994.

    18. M. Robinson, 1961, “Movement of Air in the Electric Wind of the Corona Discharge,” Transactions of the American Institute of Electrical Engineers, Vol. 80, pp. 143-150.

    19. H. Bondar, F. Bastein, 1986, “Effect of Neutral Fluid Velocity on Direct Conversion from Electrical to Fluid Kinetic Energy in an Electro-Fluid- Dynamics Device,” J. Phys. D: Appl. Phys. Vol. 19, pp. 1657-1663.

    20. S. M. Marco, H. R. Velkoff, 1963, “Effect of Electrostatic Fields on Free Convection Heat Transfer from Flat Plate,” ASME Paper No. 63-HT-9.

    21. R. J. O’ brien, A. J. Shine, 1967, “Some Effects of an Electric Field on Heat Transfer from a Vertical Plate in Free Convection,” Journal of Heat Transfer, Vol. 89, pp. 114-116.

    22. M. E. Franke, 1969, “Effect of Vortices Induced by Corona Discharge on Free Convection Heat Transfer from a Vertical Plate,” ASME Journal of Heat Trnasfer, Vol. 91, pp. 427-433.

    23. H. Windischmann, 1974, “Investigation of Corona Discharge Cooling (CDC) of a Horizontal Plate under Free Convection,” AIChE Symposium Series 138, Vol. 70, pp. 23-30.

    24. A. S. Mitchell, L. E. Williams, 1978, “Heat Transfer by the Corona Wind Impinging on a Flat Surface,” Journal of Electrostatics, Vol. 5, pp. 309-324.

    25. M. M. Ohadi, D. A. Nelson, S. Zia, 1991, “Heat Transfer Enhancement of Laminar and Turbulent Pipe Flow via Corona Discharge,” International Journal of Heat and Mass Transfer, Vol. 34, pp. 1175-1187.

    26. M. E. Franke, L. E. Hogue, 1991, “Electrostatic Cooling of a Horizontal Cylinder,” ASME Journal of Heat Transfer, Vol. 113, pp. 544-548.

    27. B. L. Owsenek, J. Seyed-Yagoobi, R. H. Page, 1995, “Experimental Investigation of Corona Wind Heat Transfer Enhancement with a Heated Horizontal Flat Plate,” Journal of Heat Transfer, Vol. 117, pp. 309-315.

    28. B. L. Owsenek, J. Seyed-Yagoobi, 1997, “Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement through Wire-Plate Corona Discharge,” Journal of Heat Transfer, Vol. 119, pp. 604-610.

    29. H. Kalman, E. Sher, 2001, “Enhancement of Heat Transfer by means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly,” Applied Thermal Engineering, Vol. 21, pp. 265-282.

    30. A. Rashkovan, E. Sher, H. Kalman, 2002, “Experimental Optimization of an Electric Blower by Corona Wind,” Applied Thermal Engineering, Vol. 22, pp. 1587-1599.

    31. S. Bhattacharyya, A. Peterson, 2002, “Corona Wind-Augmented Natural Convection - Part 1: Single Electrode Studies,” Journal of Enhanced Heat Transfer, Vol. 9, pp. 209-219.

    32. R. L. Mott, 2001, “Machine Elements in Mechanical Design,” Prentice-Hall International, Inc. Third Edition, pp. 632-635.

    33. A. D. Kraus, A. Bar-Cohen, 1995, “Design and Analysis of Heat Sinks,” New York /John Wiley.

    34. K. E. Starner, H. N. McManus, JR. 1963, “An Experimental Investigation of Free-Convection Heat Transfer from Rectangular-Fin Arrays,” Journal of Heat Transfer, pp. 273-278.

    35. J. R. Welling, C. B. Wooldridge, 1965, “Free Convection Heat Transfer Coefficients from Rectangular Vertical Fins,” Journal of Heat Transfer, pp. 439-444.

    36. F. Harahap, H. N. McManus, JR. 1967, “Natural Convection Heat Transfer from Horizontal Rectangular Fin Arrays,” Journal of Heat Transfer, pp.32-38.

    37. C. D. Jones, L. F. Smith, 1970, “Optimum Arrangement of Rectangular Fins on Horizontal Surfaces for Free-Convection Heat Transfer,” Journal of Heat Transfer, pp. 6-10.

    38. G. F. Marsters, 1972, “Arrays of Heated Horizontal Cylinders in Natural Convection,” Int. J. Heat Mass Transfer, Vol. 15, pp. 921-933.

    39. B. Farouk, S. I. Guceri, 1981, “Natural Convection from a Horizontal Cylinder-Laminar Regime,” Journal of Heat Transfer, Vol. 103, pp. 522-527.

    40. E. M. Sparrow, D. S. Boessneck, 1983, “Effect of Transverse Misalignment on Natural Convection from a Pair of Parallel, Vertically Stacked, Horizontal Cylinders,” Journal of Heat Transfer, Vol. 105, pp. 241-247.

    41. Ikuo Tokura, Hakaru Saito, Koki Kishinami, Kazuo Muramoto, 1983, “An Experimental Study of Free Convection Heat Transfer From a Horizontal Cylinder in a Vertical Array Set in Free Space Between Parallel Walls,” Journal of Heat Transfer, Vol. 105, pp.102-107.

    42. M. J. Chamberlain, K. G. T. Hollands, G. D. Raithby, 1985, “Experiments and Theory on Natural Convection Heat Transfer from Bodies of Complex Shape,” Journal of Heat Transfer, Vol. 107, pp. 624-629.

    43. E. M. Sparrow, S. B. Vemuri, 1986, “Orientation Effects on Natural Convection/Radiation Heat Transfer From Pin-Fin Arrays,” Int. J. Heat Mass Transfer, Vol. 29, pp. 359-368.

    44. M. M. Yovanovich, K. Jafarpur, 1987, “Models of Laminar Natural Convection From Vertical and Horizontal Isothermal Cuboids for All Prandtl Numbers and All Rayleigh Numbers Below ,”

    45. A. I. Zografos, J. E. Sunderland, 1990, “Natural Convection from Pin Fin Arrays,” Experimental Thermal and Fluid Science, Vol. 3, pp. 440-449.

    46. H. M. Badr, K. Shamsher, 1993, “Free Convection from an Elliptic Cylinder with Major Axis Vertical,” Int. J. Heat Mass Transfer, Vol. 36, pp. 3593-3602.

    47. A. Bejan, A. J. Fowler, G. Stanescu, 1995, “The Optimal Spacing between Horizontal Cylinders in a Fixed Volume Cooled by Natural Convection,” Int. J. Heat Mass Transfer, Vol. 38, pp. 2047-2055.

    48. K. Kitamura, F. Kimura, 1995, “Heat Transfer and Fluid Flow of Natural Convection adjacent to Upward-Facing Horizontal Plates,” Int. J. Heat Mass Transfer, Vol. 38, pp. 3149-3159.

    49. G. Ledezma, A. Bejan, 1996, “Heat Sinks With Sloped Plate Fins in Natural and Forced Convection,” Int. J. Heat Mass Transfer, Vol. 39, pp. 1773-1783.

    50. V. R. Rao, S. P. Venkateshan, 1996, “Experimental Study of Free Convection and Radiation in Horizontal Fin Arrays,” Int. J. Heat Mass Transfer, Vol. 39, pp. 779-789.

    51. H. M. Badr, 1997, “Laminar Natural Convection from an Elliptic Tube With Different Orientations,” Journal of Heat Transfer, Vol. 119, pp. 709-718.

    52. G. Cesini, M. Paroncini, G. Cortella, M. Manzan, 1999, “Natural Convection from a Horizontal Cylinder in a Rectangular Cavity,” Int. J. Heat Mass Transfer, Vol. 42, pp. 1801-1811.

    53. K. Hata, Y. Takeuchi, M. Shiotsu, A. Sakurai, 1999, “Natural Convection Heat Transfer from a Horizontal Cylinder in Liquid Sodium,” Nuclear Engineering and Design, 193, pp. 105-118.

    54. K. Kitamura, F. Kami-iwa, T. Misumi, 1999, “Heat Transfer and Fluid Flow of Natural Convection around Large Horizontal Cylinders,” Int. J. Heat Mass Transfer, Vol. 42, pp. 4093-4106.

    55. S. Baskayat, M. Sivrioglu, M. Ozek, 2000, “Parametric Study of Natural Convection Heat Transfer from Horizontal Rectangular Fin Arrays,” International Journal of Thermal Science, Vol. 39, pp. 797-805.

    56. E. Yu, Y. K. Joshi, 2000, “Natural Convection Air Cooling of Electronic Components in Partially Open Compact Horizontal Enclosures,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, pp. 14-22.

    57. R. Chouikh, A. Guizani, A. El Cafsi, M. Maalej, A. Belghith, 2000, “Experimental Study of the Natural Convection Flow around an Array of Heated Horizontal Cylinders,” Renewable Energy, Vol. 21, pp. 65-78.

    58. W. W. Thrasher, T. S. Fisher, K. E. Torrance, 2000, “Experiments on Chimney-Enhanced Free Convection from Pin-Fin Heat Sinks,” Journal of Electronic Packaging, Vol. 122, pp. 350-355.

    59. F. Harahap, D. Setio, 2001, “Correlations for Heat Dissipation and Natural Convection Heat –Transfer From Horizontally-Based, Vertically-Finned Arrays,” Applied Energy, Vol. 69, pp. 29-38.

    60. S. Mahmud, P. Kumar Das, N. Hyder, 2002, “Laminar Natural Convection around an Isothermal Square Cylinder at Different Orientations,” Int. Comm. Heat Mass Transfer, Vol. 29, pp. 993-1003.

    61. E. Yu, Y. K. Joshi, 2002, “Heat Transfer Enhancement from Enclosed Discrete Components Using Pin-Fin Heat Sinks,” Int. J. Heat Mass Transfer, Vol. 45, pp. 4957-4966.

    62. E. F. Schubert, 2003, “Light-Emitting Diodes,” Cambridge University Press.

    63. 施敏,2002,“半導體元件物理與製作技術(第二版)”,高立圖書。

    64. 黃仁聰,2003,“EHD在低溫環境下對結霜過程的影響”,碩士論文,國立清華大學。

    65. 王雲珍,1992,“半導體”,亞東書局。

    66. 林志勳,2004/5,“手機市場之後 高亮度LED照亮汽車應用市場”,新電子科技雜誌。

    67. http://membres.lycos.fr/plasmapropulsion/

    68. P. Beguin, K. Castor, J. Scholten, 2003, “Electric Wind Characterization in Negative Point – Plate Corona Discharge in Air,” European Physical Journal Applied Physics, Vol. 22, pp. 41-49.

    69. C. Junhong, August 2002, "Direct-Current Corona Enhanced Chemical Reactions", Phd Thesis, University of Minnesota, USA.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE