簡易檢索 / 詳目顯示

研究生: 鄭俊杰
Zheng, Jun-Jie
論文名稱: 台灣族群之全基因組關聯性研究: 探討影響血清尿酸值的遺傳變異位點
A genome-wide association study identifies new genetic loci influencing serum uric acid levels in Taiwanese population
指導教授: 熊昭
Hsiung, Chao
口試委員: 張晃猷
Chang, Hwan-You
鍾仁華
Chung, Ren-Hua
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 36
中文關鍵詞: 全基因組關聯性分析單一核苷酸多型性尿酸台灣人體資料庫
外文關鍵詞: GWAS, SNP, Uric acid, TWB
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尿酸是嘌呤代謝後的產物,主要在腎臟中被排泄掉,是評估人體腎功能的一個重要生化指標。研究顯示,血清尿酸值過高的人容易罹患痛風,在痛風患者關節中常發現的尿酸結晶是導致疼痛的原因,此外尿酸還與心血管疾病、肥胖、糖尿病、喝酒、抽菸有關。台灣的健康調查指出,大約每五個台灣成年男性就有一人罹患高尿酸血症(血清尿酸值大於7 ml/dl),在成年女性中則是每十人就有一人罹患(血清尿酸值大於6 ml/dl),與其他種族或國家作比較,我國國人罹患高尿酸血症的比例偏高。國內過去有針對單一基因與尿酸做關聯性分析的研究,然而以大量基因位點來做的研究仍有不足,因此本次研究透過台灣人體資料庫的資料來做尿酸的全基因體關聯性分析,探究哪些基因位點與血清尿酸值具有高度相關性。
    研究上我們使用的資料包括年齡、性別、身高體重、血清尿酸值、問卷調查的抽菸狀況、飲酒狀況、心血管疾病、第二型糖尿病,以及單一核苷酸多態性的基因資料。關聯性分析所用的模型是加成模式線性迴歸模型。此外我們也分別針對男女做研究,嘗試了解男女之間影響尿酸的基因位點是否有差異。
    研究結果顯示,總共有八個與血清尿酸值有顯著線性相關的位點被我們找到,其中文獻上從未發現的有兩個,分別是SLC2A9上的rs77140241與MUC1上的rs4072037。其他的位點包括ABCG2上的rs4148155、rs1001179、rs13144899,SLC2A9的rs3775948,GCKR上的rs780093與SLC17A3上的rs1165205。另外我們找到了只在台灣男性才顯著的新位點,基因SRPK2上的rs17721991。


    Uric Acid (UA) is the end oxidation product of purine catabolism and would be excreted in kidney. Hence, UA is an important biomarker for estimating the kidney functions. It is reported that the patients with high level of serum UA (SUA) tend to suffer from gout. The physical pain usually results from the UA crystals in the patients’ joints. Furthermore, UA is also associated with cardiovascular diseases, obesity and diabetes. Drinking and smoking frequently affect the level of UA. According to a Taiwanese health survey, one fifth of males and one tenth of females in Taiwan have hyperuricemia (SUA > 7 ml/dl, SUA > 6 ml/dl, respectively). Also, the survey indicated the rates in Taiwan are higher than them in other populations. In some of literature, it is estimated that the heritability of UA is in the range of 40% to 73%. In Taiwan, the previous study mainly focused on the relation between a genetic locus and SUA. A more comprehensive genome-wide study is still lacking. Thus, the present study aims to discover the new loci related to SUA levels through genome-wide association study (GWAS) using the Taiwan biobank (TWB) data.
    The TWB data we used in this study include age, gender, height, weight, SUA level, the state of cardiovascular diseases, diabetes, drinking, smoking and the genetic information (single nucleotide polymorphisms, SNPs). In the association study, we adopted the additive linear regression model. Besides, we divided the samples by the gender and conducted the association analysis to understand whether the loci related to SUA are different between males and females.
    The results showed that 2 new genetic loci (rs77140241, rs4072037) are discovered in our study. We found the 6 known SUA-associated SNPs (rs4148155, rs3775948, rs10011796, rs13144899, rs780093, rs1165205). Besides, the SNP rs17721991 is a new discovered genetic locus associated with SUA only in male.

    1. Introduction 1 1.1 The previous GWAS of SUA 2 1.2. Demographic and life-style factors 2 1.3. Study aims 3 2. Materials and methods 4 2.1. Study subjects 4 2.2. Measurements of variables 4 2.3. Genotyping 5 2.4. Quality control 5 2.4.1 The quality control of the SNPs 5 2.4.2 The quality control of the samples 6 2.5. Statistical methods 6 3. Results 7 3.1. Genome-wide association analysis of SUA levels in discovery phase 7 3.2. Conditional analysis to discover the major SNPs 7 3.3. The validation of the SNPs found in discovery phase 8 3.4. The SNPs related to SUA levels are different between males and females 9 4. Discussion 11 4.1 The SNPs associated with UA on the ABCG2 and SLC2A9 11 4.2 The discovered SNPs on other genes 12 4.3. Gender difference 13 4.3. Minor allele frequency of Han Chinese in different regions 13 4.4. The comparison among other population in major genetic loci associated with SUA levels 14 4.5. Limitation and perspective 15 4.6. Conclusion 15 5. Figures and tables 17 6. References 29

    1. Giordano, C., Karasik, O., King-Morris, K. &Asmar, A. Uric Acid as a Marker of Kidney Disease: Review of the Current Literature. Disease Markers 2015, 382918 (2015).
    2. Shi, Y., Evans, J. E. &Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003).
    3. Xu, X., Li, C., Zhou, P. &Jiang, T. Uric acid transporters hiding in the intestine. Pharm. Biol. 54, 3151–3155 (2016).
    4. ElRidi, R. &Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res. 8, 487–493 (2017).
    5. Maiuolo, J., Oppedisano, F., Gratteri, S., Muscoli, C. &Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 213, 8–14 (2015).
    6. Chang, B. S. W. Ancient insights into uric acid metabolism in primates. Proc. Natl. Acad. Sci. U. S. A. 111, 3657–8 (2014).
    7. Oğuz, N., Kırça, M., Çetin, A. &Yeşilkaya, A. Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells. J. Recept. Signal Transduct. Res. 37, 500–505 (2017).
    8. Madlala, H. P., Maarman, G. J. &Ojuka, E. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle. Nutr. Rev. 74, 259 (2016).
    9. Ames, B. N., Cathcart, R., Schwiers, E. &Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl. Acad. Sci. 78, 6858–6862 (1981).
    10. Sautin, Y. Y. &Johnson, R. J. Uric acid: The oxidant-antioxidant paradox. in Nucleosides, Nucleotides and Nucleic Acids 27, 608–619 (NIH Public Access, 2008).
    11. Zoccali, C., Maio, R., Mallamaci, F., Sesti, G. &Perticone, F. Uric acid and endothelial dysfunction in essential hypertension. J. Am. Soc. Nephrol. 17, 1466–71 (2006).
    12. Puddu, P., Puddu, G. M., Cravero, E., Vizioli, L. &Muscari, A. The relationships among hyperuricemia, endothelial dysfunction, and cardiovascular diseases: Molecular mechanisms and clinical implications. J. Cardiol. 59, 235–242 (2012).
    13. Kanellis, J. &Kang, D.-H. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Semin. Nephrol. 25, 39–42 (2005).
    14. Cai, W. et al. Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway. Biomed Res. Int. 2017, 4391920 (2017).
    15. Hara, K. et al. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa. J. Immunol. 192, 4032–42 (2014).
    16. Ghaemi-Oskouie, F. &Shi, Y. The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr. Rheumatol. Rep. 13, 160–6 (2011).
    17. Chuang, S. Y., Lee, S. chen, Hsieh, Y.Te &Pan, W. H. Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993-1996 to 2005- 2008. Asia Pac. J. Clin. Nutr. 20, 301–308 (2011).
    18. Dalbeth, N., Stamp, L. K. &Merriman, T. R. The genetics of gout: Towards personalised medicine? BMC Medicine 15, 108 (2017).
    19. Zhang, L. et al. Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations. Am. J. Epidemiol. 177, 923–932 (2013).
    20. Okada, Y. et al. Meta-analysis identifies multiple loci associated with kidney function–related traits in east Asian populations. Nature Genetics 44, (2012).
    21. Cheng, S. T. et al. Association of ABCG2 rs2231142-A allele and serum uric acid levels in male and obese individuals in a Han Taiwanese population. J. Formos. Med. Assoc. 116, 18–23 (2017).
    22. Yamagishi, K. et al. The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people. Rheumatology 49, 1461–1465 (2010).
    23. Dehghan, A. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953–1961 (2008).
    24. Takada, T. et al. ABCG2 Dysfunction Increases Serum Uric Acid by Decreased Intestinal Urate Excretion. Nucleosides, Nucleotides and Nucleic Acids 33, 275–281 (2014).
    25. Giri, A. K. et al. Genome wide association study of uric acid in Indian population and interaction of identified variants with Type 2 diabetes. Sci. Rep. 6, 21440 (2016).
    26. Sun, X. et al. Serum uric acid levels are associated with polymorphisms in the SLC2A9, SF1 and GCKR genes in a Chinese population. Acta Pharmacol. Sin. 35, 1421–1427 (2014).
    27. Köttgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).
    28. Kuzuya, M., Ando, F., Iguchi, A. &Shimokata, H. Effect of aging on serum uric acid levels: longitudinal changes in a large Japanese population group. J. Gerontol. A. Biol. Sci. Med. Sci. 57, M660-4 (2002).
    29. Gephardt, M. C., Hanlon, T. J. &Matson, C. F. Blood Uric Acid Values as Related to Sex and Age. JAMA 189, 1028–1029 (1964).
    30. Wingrove, C. S., Walton, C. &Stevenson, J. C. The effect of menopause on serum uric acid levels in non-obese healthy women. Metabolism. 47, 435–8 (1998).
    31. Hak, A. E. &Choi, H. K. Menopause, postmenopausal hormone use and serum uric acid levels in US women--the Third National Health and Nutrition Examination Survey. Arthritis Res. Ther. 10, R116 (2008).
    32. Hikita, M. et al. Relationship between hyperuricemia and body fat distribution. Intern. Med. 46, 1353–8 (2007).
    33. Tsushima, Y. et al. Uric acid secretion from adipose tissue and its increase in obesity. J. Biol. Chem. 288, 27138–27149 (2013).
    34. Haj Mouhamed, D. et al. Effect of cigarette smoking on plasma uric acid concentrations. Environ. Health Prev. Med. 16, 307–12 (2011).
    35. Bhole, V., Choi, J. W. J., Kim, S. W., deVera, M. &Choi, H. Serum uric acid levels and the risk of type 2 diabetes: a prospective study. Am. J. Med. 123, 957–61 (2010).
    36. Lv, Q. et al. High Serum Uric Acid and Increased Risk of Type 2 Diabetes: A Systemic Review and Meta-Analysis of Prospective Cohort Studies. PLoS One 8, e56864 (2013).
    37. Yamanaka, H. [Alcohol ingestion and hyperuricemia]. Nihon Rinsho. 54, 3369–73 (1996).
    38. Choi, H. K. &Curhan, G. Beer, liquor, and wine consumption and serum uric acid level: The Third National Health and Nutrition Examination Survey. Arthritis Care and Research 51, 1023–1029 (2004).
    39. Cheng, S. T. et al. Association of ABCG2 rs2231142-A allele and serum uric acid levels in male and obese individuals in a Han Taiwanese population. J. Formos. Med. Assoc. 116, 18–23 (2017).
    40. Collection, S. HHS Public Access. 8, 583–592 (2016).
    41. Merriman, T. R. An update on the genetic architecture of hyperuricemia and gout. Arthritis Res. Ther. 17, 98 (2015).
    42. Nakayama, A. et al. ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides, Nucleotides and Nucleic Acids 30, 1091–1097 (2011).
    43. Wen, C. C. et al. Genome-wide association study identifies ABCG2 (BCRP) as an allopurinol transporter and a determinant of drug response. Clin. Pharmacol. Ther. 97, 518–25 (2015).
    44. Ibarra-Laclette, E. et al. Architecture and evolution of a minute plant genome. Nature 498, 94–98 (2013).
    45. Charles, B. A. et al. A genome-wide association study of serum uric acid in African Americans. BMC Med. Genomics 4, 17 (2011).
    46. Sun, X. et al. Serum uric acid levels are associated with polymorphisms in the SLC2A9, SF1, and GCKR genes in a Chinese population. Acta Pharmacol. Sin. 35, 1421–7 (2014).
    47. Yang, Q. et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ. Cardiovasc. Genet. 3, 523–530 (2010).
    48. Lima, W. G., Martins-Santos, M. E. S. &Chaves, V. E. Uric acid as a modulator of glucose and lipid metabolism. Biochimie 116, 17–23 (2015).
    49. Wang, Y. et al. Fasting plasma glucose and serum uric acid levels in a general Chinese population with normal glucose tolerance: A U-shaped curve. PLoS One 12, e0180111 (2017).
    50. Bleyer, A. J. &Kmoch, S. Autosomal Dominant Tubulointerstitial Kidney Disease, MUC1-Related. GeneReviews® (1993).
    51. Bleyer, A. J. et al. Variable clinical presentation of an MUC1 mutation causing medullary cystic kidney disease type 1. Clin. J. Am. Soc. Nephrol. 9, 527–35 (2014).
    52. Giraldi, L. et al. MUC1, MUC5AC, and MUC6 polymorphisms, Helicobacter pylori infection, and gastric cancer. Eur. J. Cancer Prev. 27, 1 (2017).
    53. Ye, Y., Yang, C., Xu, L. &Fang, D. MUC1 rs4072037 Polymorphism is Associated with Decreased Risk of Gastric Cancer: A Meta-analysis. Int. J. Biol. Markers 32, 284–290 (2017).
    54. Döring, A. et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet. 40, 430–436 (2008).
    55. Chen, J. et al. Genetic Structure of the Han Chinese Population Revealed by Genome-wide SNP Variation. Am. J. Hum. Genet. 85, 775–785 (2009).
    56. Cleophas, M. C. et al. ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. Pharmgenomics. Pers. Med. 10, 129–142 (2017).
    57. Lee, J. et al. Genome-wide association analysis identifies multiple loci associated with kidney disease-related traits in Korean populations. PLoS One 13, 1–19 (2018).
    58. Chuang, S. Y., Lee, S. chen, Hsieh, Y.Te &Pan, W. H. Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993-1996 to 2005- 2008. Asia Pac. J. Clin. Nutr. 20, 301–308 (2011).
    59. Yang, B. et al. A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population. BioMedCentral Med. genomics 7, 10 (2014).

    QR CODE