研究生: |
靳巧鋒 Jin, Qiao-feng |
---|---|
論文名稱: |
超疏水奈米材料在超音波上應用研究 The Application Study of Superhydrophobic Nanoparticles in Ultrasound |
指導教授: |
葉秩光
Yeh, Chih-Kuang |
口試委員: |
劉浩澧
Liu, Hao-Li 林政鞍 Lin, Cheng-An 楊家銘 Yang, Chia-Min 黃郁棻 Huang, Yu-Fen 張建文 Chang, Chien-Wen |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 156 |
中文關鍵詞: | 介面奈米氣泡 、超音波 、穴蝕效應 、超疏水 、奈米粒子 、血脑障壁 |
外文關鍵詞: | interfacial nanobubble, ultrasound, cavitation, superhydrophobicity, nanoparticles, blood-tumor-barrier |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因氣體對超音波具有很好的回應,微氣泡作為超音波對比劑和載體已經得到廣泛研究和應用,但其微米尺寸和不穩定的缺點限制其作為超音波診療試劑的應用。介面奈米氣泡展現出超一般氣泡的10個數量級的穩定性,對開發具有超音波的回應能力的奈米粒子系統具有重要的意義。此外,疏水材料有機會自發穩定的吸附介面奈米氣泡並增強穴蝕效應,但介面奈米氣泡是否穩定存在于疏水奈米顆粒上,目前還沒得到深入的研究。因此,本論文擬用聲學的方法證實超疏水奈米粒子表面上確實存在奈米氣泡,並基於這些介面奈米氣泡的性質,開發具有超音波回應能力的奈米粒子應用於生物醫學超音波領域。在第一章,我們回顧了當前介面奈米氣泡的研究現狀及其檢測,製備及其在生醫領域的應用。在第二章我們利用聚四氟乙烯(PTFE)奈米粒子作為疏水奈米粒子的模型,分別用聲學方法和化學方法證明其極大降低穴蝕效應的閾值間接證實疏水材料表面確實可能有介面奈米氣泡,並可持久的產生穴蝕效應並產生自由基。接著在第三章中,為確定奈米材料性質對於吸附奈米氣泡的影響,設計了不同紋理結構不同表面疏水程度的矽奈米材料為模型,並運用被動式穴蝕效應檢測和光聲高速攝像系統,超音波影像系統對其產生穴蝕效應的能力和行為進行研究。我們發現並推斷奈米粒子的外表面的疏水性質相對於其紋理結構,對其降低穴蝕效應閾值更重要。在第四章,將超疏水奈米粒子用作為氣核用超音波探在原位產生微氣泡作為超音波造影劑。最後在第五章,我們進一步將其應用於脑瘤的通透性增加,實現了注射一劑超疏水奈米粒子即可在一周內進行實現多次通透性的增强。綜上所述,我們證實了超疏水奈米粒子表面有介面奈米氣泡並穩定存在並可穩定的引發穴蝕效應產生氣泡用以超音波造影和血腦障壁開啟,使我們有機會將各種奈米材料引入並應到生物醫用超音波領域。
Microbubbles (MBs) as ultrasound (US) contrast agents and drug/gene carriers have been widely studied. However, their micron-scale size and bad stability limit their applications as theranostic agents for US. Interfacial nanobubbles (INBs) on hydrophobic surface were found to have a 10 orders of magnitude stability than traditional MBs, and are promising in developing stable US-response systems. In addition, superhydrophobic (SH) surface has the opportunity to adsorb the INBs on their surface spontaneously and to enhance the cavitation activities persistently. However, whether INBs can be stably presented on SH nanoparticles (NPs) has not been studied sufficiently. Therefore, in this study, we aimed to demonstrate that INBs can exist on the surface of SH NPs using acoustic methods and to develop US-responsible NPs for biomedical applications on the basis of their unique properties of INBs. In chapter 1, we firstly reviewed the state of art of INBs, and their detection, characterizations and applications in biomedical fields. In chapter 2, we used polytetrafluoroethylene (PTFE) NPs as a model SH NP, and applied acoustic passive cavitation detection (PCD) and chemical methods to assess the cavitation activity at various conditions. The results suggest that INBs on the PTFE NPs greatly lower the cavitation threshold and initiate durable cavitation effects and can generate free radicals. In chapter 3, we further combined various model silica NPs with the most sensitive PCD, high-speed photography and US imaging methods, to study their cavitation capability and behaviors under US. We found that the existence of INBs on the external surface of NPs were the key to explain some of their phenomena and inferred that the external SH surface of NPs plays a more dominant role in generating cavitation than their textured properties. In chapter 4, we applied above SH NPs as gas nuclei to generate MBs in-situ as US contrast agent by linear-array transducers. And in chapter 5, we further applied this SH NPs to improve the permeability of blood-tumor-barrier BTB to EB because of their durable contrast and inertial cavitation capability, and achieving the multiple successful BTB-opening within one week by US after single injection of SH NPs. In summary, we demonstrated that INBs on SH NPs were stable and can initiate cavitation and form gas bubbles for contrast enhancement and BTB-opening, which give the opportunity to serve as an theranostic agents for biomedical US.
[1] S.A. Goss, R.L. Johnston, F. Dunn, Compilation of Empirical Ultrasonic Properties of Mammalian-Tissues .2., Journal of the Acoustical Society of America, 68 (1980) 93-108.
[2] S.A. Goss, R.L. Johnston, F. Dunn, Comprehensive Compilation of Empirical Ultrasonic Properties of Mammalian-Tissues, Journal of the Acoustical Society of America, 64 (1978) 423-457.
[3] E.G. Schutt, D.H. Klein, R.M. Mattrey, J.G. Riess, Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals, Angew Chem Int Ed Engl, 42 (2003) 3218-3235.
[4] P.N. Burns, S.R. Wilson, D.H. Simpson, Pulse inversion imaging of liver blood flow - Improved method for characterizing focal masses with microbubble contrast, Invest Radiol, 35 (2000) 58-71.
[5] D. Cosgrove, Advances in contrast agent imaging using Cadence (TM) contrast pulse sequencing technology (CPS) and SonoVue (R), European Radiology, 14 (2004) P1-P3.
[6] E. Quaia, Microbubble ultrasound contrast agents: an update, Eur Radiol, 17 (2007) 1995-2008.
[7] D. Cosgrove, Ultrasound contrast agents: an overview, Eur J Radiol, 60 (2006) 324-330.
[8] A.L. Klibanov, Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging, Med Biol Eng Comput, 47 (2009) 875-882.
[9] T. Porter, F. Xie, A. Kricsfeld, 703-5 Myocardial Ultrasound Contrast with Intravenous Perfluoropropane-enhanced Sonicated Dextrose Albumin: Initial Clinical Experience in Humans, Journal of the American College of Cardiology, 25 (1995) 39A.
[10] V. Sboros, M.X. Tang, The assessment of microvascular flow and tissue perfusion using ultrasound imaging, P I Mech Eng H, 224 (2010) 273-290.
[11] C. Pichon, K. Kaddur, P. Midoux, F. Tranquart, A. Bouakaz, Recent advances in gene delivery with ultrasound and microbubbles, Journal of Experimental Nanoscience, 3 (2008) 17-40.
[12] H. Leong-Poi, J. Christiansen, P. Heppner, C.W. Lewis, A.L. Klibanov, S. Kaul, J.R. Lindner, Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression, Circulation, 111 (2005) 3248-3254.
[13] B.A. Kaufmann, J.R. Lindner, Molecular imaging with targeted contrast ultrasound, Curr Opin Biotechnol, 18 (2007) 11-16.
[14] C.H. Wang, Y.F. Huang, C.K. Yeh, Aptamer-Conjugated Nanobubbles for Targeted Ultrasound Molecular Imaging, Langmuir, 27 (2011) 6971-6976.
[15] M.A. Borden, H. Zhang, R.J. Gillies, P.A. Dayton, K.W. Ferrara, A stimulus-responsive contrast agent for ultrasound molecular imaging, Biomaterials, 29 (2008) 597-606.
[16] J.R. Lindner, Contrast ultrasound molecular imaging of inflammation in cardiovascular disease, Cardiovasc Res, 84 (2009) 182-189.
[17] A.L. Klibanov, T.I. Shevchenko, B.I. Raju, R. Seip, C.T. Chin, Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery, J Control Release, 148 (2010) 13-17.
[18] K. Ferrara, R. Pollard, M. Borden, Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery, Annu Rev Biomed Eng, 9 (2007) 415-447.
[19] S. Ibsen, C.E. Schutt, S. Esener, Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment, Drug Des Devel Ther, 7 (2013) 375-388.
[20] K. Hanajiri, T. Maruyama, Y. Kaneko, H. Mitsui, S. Watanabe, M. Sata, R. Nagai, T. Kashima, J. Shibahara, M. Omata, Y. Matsumoto, Microbubble-induced increase in ablation of liver tumors by high-intensity focused ultrasound, Hepatol Res, 36 (2006) 308-314.
[21] J. Huang, J.S. Xu, R.X. Xu, Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins, Biomaterials, 31 (2010) 1278-1286.
[22] A. Lawrie, A.F. Brisken, S.E. Francis, D.C. Cumberland, D.C. Crossman, C.M. Newman, Microbubble-enhanced ultrasound for vascular gene delivery, Gene Therapy, 7 (2000) 2023-2027.
[23] S. Pfaffenberger, B. Devcic-Kuhar, C. Kollmann, S.P. Kastl, C. Kaun, W.S. Speidl, T.W. Weiss, S. Demyanets, R. Ullrich, H. Sochor, C. Wober, J. Zeitlhofer, K. Huber, M. Groschl, E. Benes, G. Maurer, J. Wojta, M. Gottsauner-Wolf, Can a commercial diagnostic ultrasound device accelerate thrombolysis? An in vitro skull model, Stroke, 36 (2005) 124-128.
[24] G. Tsivgoulis, W.C. Culp, A.V. Alexandrov, Ultrasound enhanced thrombolysis in acute arterial ischemia, Ultrasonics, 48 (2008) 303-311.
[25] M. Saqqur, G. Tsivgoulis, F. Nicoli, D. Skoloudik, S. Christian, L. Grimaud, V. Sharma, M. Rubiera, T.N. Sergentanis, V. Larrue, J. Eggers, K. Khan, L.M. Zhao, R. Marc, F. Perren, D. Storie, C.A. Molina, A.V. Alexandrov, The Role Of Sonolysis, Sonothrombolysis With And Without Microbubble In Acute Ischemic Stroke: A Systematic Review And Meta-analysis Of Randomized Control Trials And Case Control Studies, Stroke, 42 (2011) E261-E261.
[26] F.P. Curra, L.A. Crum, Therapeutic ultrasound: Surgery and drug delivery, Acoustical Science and Technology, 24 (2003) 343-348.
[27] O. Louisnard, J. González-García, Acoustic Cavitation, Ultrasound Technologies for Food and Bioprocessing2011, pp. 13-64.
[28] S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production, J Hazard Mater, 178 (2010) 1007-1014.
[29] Y.F. Mingxi Wan, CAVITATION IN BIOMEDICINE : principles and techniques, SPRINGER (2016) 1-495.
[30] P.S. Sheeran, P.A. Dayton, Phase-Change Contrast Agents for Imaging and Therapy, Curr Pharm Design, 18 (2012) 2152-2165.
[31] J. Tian, F. Yang, H. Cui, Y. Zhou, X. Ruan, N. Gu, A Novel Approach to Making the Gas-Filled Liposome Real: Based on the Interaction of Lipid with Free Nanobubble within the Solution, ACS Appl Mater Interfaces, 7 (2015) 26579-26584.
[32] Y. Wang, G. Liu, H. Hu, T.Y. Li, A.M. Johri, X. Li, J. Wang, Stable Encapsulated Air Nanobubbles in Water, Angew Chem Int Ed Engl, 54 (2015) 14291-14294.
[33] E. Kang, H.S. Min, J. Lee, M.H. Han, H.J. Ahn, I.C. Yoon, K. Choi, K. Kim, K. Park, I.C. Kwon, Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects, Angew Chem Int Ed Engl, 49 (2010) 524-528.
[34] K.H. Min, H.S. Min, H.J. Lee, D.J. Park, J.Y. Yhee, K. Kim, I.C. Kwon, S.Y. Jeong, O.F. Silvestre, X.Y. Chen, Y.S. Hwang, E.C. Kim, S.C. Lee, pH-Controlled Gas-Generating Mineralized Nanoparticles: A Theranostic Agent for Ultrasound Imaging and Therapy of Cancers, Acs Nano, 9 (2015) 134-145.
[35] X. Zhang, D. Lohse, Perspectives on surface nanobubbles, Biomicrofluidics, 8 (2014) 041301.
[36] M. Alheshibri, J. Qian, M. Jehannin, V.S. Craig, A History of Nanobubbles, Langmuir, 32 (2016) 11086-11100.
[37] D. Lohse, X. Zhang, Surface nanobubbles and nanodroplets, Reviews of Modern Physics, 87 (2015) 981-1035.
[38] K.N. Prabhu, P. Fernades, G. Kumar, Effect of substrate surface roughness on wetting behaviour of vegetable oils, Mater Design, 30 (2009) 297-305.
[39] C.F. Carlborg, M. Do-Quang, G. Stemme, G. Amberg, W. van der Wijngaart, Continuous flow switching by pneumatic actuation of the air lubrication layer on superhydrophobic microchannel walls, Proc Ieee Micr Elect, (2008) 599-602.
[40] Y. Son, C. Kim, D.H. Yang, D.J. Alm, Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low weber and Reynolds numbers, Langmuir, 24 (2008) 2900-2907.
[41] J. Perelaer, C.E. Hendriks, A.W.M. de Laat, U.S. Schubert, One-step inkjet printing of conductive silver tracks on polymer substrates, Nanotechnology, 20 (2009) 165303.1-5.
[42] Y. Yuan, T.R. Lee, Contact Angle and Wetting Properties, Surface Science Techniques2013, 3-34.
[43] X. Li, J. He, Synthesis of raspberry-like SiO2-TiO2 nanoparticles toward antireflective and self-cleaning coatings, ACS Appl Mater Interfaces, 5 (2013) 5282-5290.
[44] R. Pirich, Contamination Protective Coatings - An Overview, Nanophotonics and Macrophotonics for Space Environments Vii, 8876 (2013).
[45] L.B. Boinovich, A.M. Emelyanenko, Anti-icing Potential of Superhydrophobic Coatings, Mendeleev Communications, 23 (2013) 3-10.
[46] Y. Lu, S. Sathasivam, J.L. Song, F.Z. Chen, W.J. Xu, C.J. Carmalt, I.P. Parkin, Creating superhydrophobic mild steel surfaces for water proofing and oil-water separation, J Mater Chem A, 2 (2014) 11628-11634.
[47] B. Bhushan, Y.C. Jung, K. Koch, Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces, Langmuir, 25 (2009) 3240-3248.
[48] J.L. Parker, P.M. Claesson, P. Attard, Bubbles, Cavities, and the Long-Ranged Attraction between Hydrophobic Surfaces, J Phys Chem-Us, 98 (1994) 8468-8480.
[49] J.R. Seddon, H.J. Zandvliet, D. Lohse, Knudsen gas provides nanobubble stability, Phys Rev Lett, 107 (2011) 116101.
[50] D. Lohse, X.H. Zhang, Pinning and gas oversaturation imply stable single surface nanobubbles, Phys Rev E, 91 (2015) 031003.
[51] M.P. Brenner, D. Lohse, Dynamic equilibrium mechanism for surface nanobubble stabilization, Phys Rev Lett, 101 (2008) 214505.
[52] J.H. Weijs, D. Lohse, Why surface nanobubbles live for hours, Phys Rev Lett, 110 (2013) 054501.
[53] S. Wang, M. Liu, Y. Dong, Understanding the stability of surface nanobubbles, J Phys Condens Matter, 25 (2013) 184007.
[54] S. Maheshwari, M. van der Hoef, X. Zhang, D. Lohse, Stability of Surface Nanobubbles: A Molecular Dynamics Study, Langmuir, 32 (2016) 11116-11122.
[55] J.R.T. Seddon, E.S. Kooij, B. Poelsema, H.J.W. Zandvliet, D. Lohse, Surface Bubble Nucleation Stability, Physical Review Letters, 106 (2011) 056101.
[56] G.X. Shen, X.H. Zhang, Y. Ming, L.J. Zhang, Y. Zhang, J. Hu, Photocatalytic Induction of Nanobubbles on TiO2 surfaces, J Phys Chem C, 112 (2008) 4029-4032.
[57] L.J. Zhang, Y. Zhang, X.H. Zhang, Z.X. Li, G.X. Shen, M. Ye, C.H. Fan, H.P. Fang, J. Hu, Electrochemically controlled formation and growth of hydrogen nanobubbles, Langmuir, 22 (2006) 8109-8113.
[58] S.J. Yang, P.C. Tsai, E.S. Kooij, A. Prosperetti, H.J.W. Zandvliet, D. Lohse, Electrolytically Generated Nanobubbles on Highly Orientated Pyrolytic Graphite Surfaces, Langmuir, 25 (2009) 1466-1474.
[59] S.T. Lou, Z.Q. Ouyang, Y. Zhang, X.J. Li, J. Hu, M.Q. Li, F.J. Yang, Nanobubbles on solid surface imaged by atomic force microscopy, J Vac Sci Technol B, 18 (2000) 2573-2575.
[60] X.H. Zhang, N. Maeda, V.S.J. Craig, Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions, Langmuir, 22 (2006) 5025-5035.
[61] X.H. Zhang, A. Khan, W.A. Ducker, A nanoscale gas state, Phys Rev Lett, 98 (2007) 136101.
[62] S. Karpitschka, E. Dietrich, J.R. Seddon, H.J. Zandvliet, D. Lohse, H. Riegler, Nonintrusive optical visualization of surface nanobubbles, Phys Rev Lett, 109 (2012) 066102.
[63] C.U. Chan, C.D. Ohl, Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics, Phys Rev Lett, 109 (2012) 174501.
[64] C.U. Chan, L. Chen, M. Arora, C.D. Ohl, Collapse of surface nanobubbles, Phys Rev Lett, 114 (2015) 114505.
[65] T. Nishiyama, Y. Yamada, T. Ikuta, K. Takahashi, Y. Takata, Metastable Nanobubbles at the Solid-Liquid Interface Due to Contact Angle Hysteresis, Langmuir, 31 (2015) 982-986.
[66] M.A. Hampton, B.C. Donose, A.V. Nguyen, Effect of alcohol-water exchange and surface scanning on nanobubbles and the attraction between hydrophobic surfaces, J Colloid Interf Sci, 325 (2008) 267-274.
[67] S.R. German, X. Wu, H.J. An, V.S.J. Craig, T.L. Mega, X.H. Zhang, Interfacial Nanobubbles Are Leaky: Permeability of the Gas/Water Interface, Acs Nano, 8 (2014) 6193-6201.
[68] X. Wang, B. Zhao, W. Ma, Y. Wang, X. Gao, R. Tai, X. Zhou, L. Zhang, Interfacial nanobubbles on atomically flat substrates with different hydrophobicities, Chemphyschem, 16 (2015) 1003-1007.
[69] M. Guan, W. Guo, L.H. Gao, Y.Z. Tang, J. Hu, Y.M. Dong, Investigation on the Temperature Difference Method for Producing Nanobubbles and Their Physical Properties, Chemphyschem, 13 (2012) 2115-2118.
[70] W. Guo, H. Shan, M. Guan, L.H. Gao, M.H. Liu, Y.M. Dong, Investigation on nanobubbles on graphite substrate produced by the water-NaCl solution replacement, Surface Science, 606 (2012) 1462-1466.
[71] J.W. Tyrrell, P. Attard, Images of nanobubbles on hydrophobic surfaces and their interactions, Phys Rev Lett, 87 (2001) 176104.
[72] C.W. Yang, Y.H. Lu, I.S. Hwang, Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes, J Phys Condens Matter, 25 (2013) 184010.
[73] M. Holmberg, A. Kuhle, J. Garnaes, K.A. Morch, A. Boisen, Nanobubble trouble on gold surfaces, Langmuir, 19 (2003) 10510-10513.
[74] L.J. Zhang, X.H. Zhang, Y. Zhang, J. Hu, H.P. Fang, The length scales for stable gas nanobubbles at liquid/solid surfaces, Soft Matter, 6 (2010) 4515-4519.
[75] W. Walczyk, P.M. Schon, H. Schonherr, The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles, J Phys-Condens Mat, 25 (2013) 184005.
[76] B.Y. Zhao, Y. Song, S. Wang, B. Dai, L.J. Zhang, Y.M. Dong, J.H. Lu, J. Hu, Mechanical mapping of nanobubbles by PeakForce atomic force microscopy, Soft Matter, 9 (2013) 8837-8843.
[77] R.P. Berkelaar, E. Dietrich, G.A.M. Kip, E.S. Kooij, H.J.W. Zandvliet, D. Lohse, Exposing nanobubble-like objects to a degassed environment, Soft Matter, 10 (2014) 4947-4955.
[78] Y.L. Wang, B. Bhushan, X.Z. Zhao, Improved Nanobubble Immobility Induced by Surface Structures on Hydrophobic Surfaces, Langmuir, 25 (2009) 9328-9336.
[79] X. Zhang, M.H. Uddin, H. Yang, G. Toikka, W. Ducker, N. Maeda, Effects of surfactants on the formation and the stability of interfacial nanobubbles, Langmuir, 28 (2012) 10471-10477.
[80] M. Switkes, J.W. Ruberti, Rapid cryofixation/freeze fracture for the study of nanobubbles at solid-liquid interfaces, Applied Physics Letters, 84 (2004) 4759-4761.
[81] M. Switkes, J.W. Ruberti, Rapid cryofixation/freeze fracture for the study of nanobubbles at solid–liquid interfaces, Applied Physics Letters, 84 (2004) 4759-4761.
[82] E.R. White, M. Mecklenburg, S.B. Singer, S. Aloni, B.C. Regan, Imaging Nanobubbles in Water with Scanning Transmission Electron Microscopy, Appl Phys Express, 4 (2011).
[83] L. Zhang, B. Zhao, L. Xue, Z. Guo, Y. Dong, H. Fang, R. Tai, J. Hu, Imaging interfacial micro- and nano-bubbles by scanning transmission soft X-ray microscopy, J Synchrotron Radiat, 20 (2013) 413-418.
[84] B. Zhao, X. Wang, S. Wang, R. Tai, L. Zhang, J. Hu, In situ measurement of contact angles and surface tensions of interfacial nanobubbles in ethanol aqueous solutions, Soft Matter, 12 (2016) 3303-3309.
[85] D. Shin, J.B. Park, Y.J. Kim, S.J. Kim, J.H. Kang, B. Lee, S.P. Cho, B.H. Hong, K.S. Novoselov, Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells, Nat Commun, 6 (2015) 6068.
[86] S. Karpitschka, E. Dietrich, J.R.T. Seddon, H.J.W. Zandvliet, D. Lohse, H. Riegler, Nonintrusive Optical Visualization of Surface Nanobubbles, Physical Review Letters, 109 (2012).
[87] D. Seo, S.R. German, T.L. Mega, W.A. Ducker, Phase State of Interfacial Nanobubbles, The Journal of Physical Chemistry C, (2015).
[88] X.H. Zhang, A. Khan, W.A. Ducker, A nanoscale gas state, Physical Review Letters, 98 (2007).
[89] X.H. Zhang, Quartz crystal microbalance study of the interfacial nanobubbles, Phys Chem Chem Phys, 10 (2008) 6842-6848.
[90] J. Yang, J. Duan, D. Fornasiero, J. Ralston, Kinetics of CO2 nanobubble formation at the solid/water interface, Physical Chemistry Chemical Physics, 9 (2007) 6327-6332.
[91] R. Steitz, T. Gutberlet, T. Hauss, B. Klosgen, R. Krastev, S. Schemmel, A.C. Simonsen, G.H. Findenegg, Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate, Langmuir, 19 (2003) 2409-2418.
[92] D.A. Doshi, E.B. Watkins, J.N. Israelachvili, J. Majewski, Reduced water density at hydrophobic surfaces: Effect of dissolved gases, P Natl Acad Sci USA, 102 (2005) 9458-9462.
[93] M. Mezger, H. Reichert, S. Schoder, J. Okasinski, H. Schroder, H. Dosch, D. Palms, J. Ralston, V. Honkimaki, High-resolution in situ x-ray study of the hydrophobic gap at the water-octadecyl-trichlorosilane interface, P Natl Acad Sci USA, 103 (2006) 18401-18404.
[94] A. Poynor, L. Hong, I.K. Robinson, S. Granick, Z. Zhang, P.A. Fenter, How water meets a hydrophobic surface, Physical Review Letters, 97 (2006) 266101.
[95] L.A. Palmer, D. Cookson, R.N. Lamb, The Relationship Between Nanobubbles and the Hydrophobic Force, Langmuir, 27 (2011) 144-147.
[96] A. Checco, T. Hofmann, E. DiMasi, C.T. Black, B.M. Ocko, Morphology of air nanobubbles trapped at hydrophobic nanopatterned surfaces, Nano Lett, 10 (2010) 1354-1358.
[97] Y. Liu, S.J. Dillon, In situ observation of electrolytic H-2 evolution adjacent to gold cathodes, Chem Commun, 50 (2014) 1761-1763.
[98] J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A.P. Alivisatos, High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells, Science, 336 (2012) 61-64.
[99] C.U. Chan, C.D. Ohl, Total-Internal-Reflection-Fluorescence Microscopy for the Study of Nanobubble Dynamics, Physical Review Letters, 109 (2012) 174501.
[100] H.J. An, G.M. Liu, V.S.J. Craig, Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces, Adv Colloid Interfac, 222 (2015) 9-17.
[101] C.F. Xue, Y. Wang, Z. Guo, Y.Q. Wu, X.J. Zhen, M. Chen, J.H. Chen, S. Xue, Z.Q. Peng, Q.P. Lu, R.Z. Tai, High-performance soft x-ray spectromicroscopy beamline at SSRF, Review of Scientific Instruments, 81 (2010) 103502.
[102] Z. Guo, R. Tai, Y. Wand, R. Yan, M. Chen, Y. Wu, J. Chen, S. Xue, H. Xu, The Soft X-ray Spectromicroscopy Beamline at SSRF, 10th International Conference on X-Ray Microscopy, 1365 (2011) 164-167.
[103] R.P. Berkelaar, J.R.T. Seddon, H.J.W. Zandvliet, D. Lohse, Temperature Dependence of Surface Nanobubbles, Chemphyschem, 13 (2012) 2213-2217.
[104] X.H. Zhang, G. Li, Z.H. Wu, X.D. Zhang, J. Hu, Effect of temperature on the morphology of nanobubbles at mica/water interface, Chinese Phys, 14 (2005) 1774-1778.
[105] N.D. Petsev, M.S. Shell, L.G. Leal, Dynamic equilibrium explanation for nanobubbles' unusual temperature and saturation dependence, Phys Rev E, 88 (2013) 010402.
[106] A.A. Atchley, A. Prosperetti, The Crevice Model of Bubble Nucleation, Journal of the Acoustical Society of America, 86 (1989) 1065-1084.
[107] S.F. Jones, G.M. Evans, K.P. Galvin, Bubble nucleation from gas cavities - a review, Adv Colloid Interfac, 80 (1999) 27-50.
[108] B.M. Borkent, S. Gekle, A. Prosperetti, D. Lohse, Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei, Physics of Fluids, 21 (2009) 102003.
[109] B.M. Borkent, S.M. Dammer, H. Schonherr, G.J. Vancso, D. Lohse, Superstability of surface nanobubbles, Phys Rev Lett, 98 (2007) 204502.
[110] R.P. Berkelaar, E. Dietrich, G.A. Kip, E.S. Kooij, H.J. Zandvliet, D. Lohse, Exposing nanobubble-like objects to a degassed environment, Soft Matter, 10 (2014) 4947-4955.
[111] N. Bremond, M. Arora, C.D. Ohl, D. Lohse, Cavitation on surfaces, J Phys-Condens Mat, 17 (2005) S3603-S3608.
[112] N. Bremond, M. Arora, C.D. Ohl, D. Lohse, Controlled multibubble surface cavitation, Physical Review Letters, 96 (2006) 224501.
[113] N. Bremond, M. Arora, S.M. Dammer, D. Lohse, Interaction of cavitation bubbles on a wall, Physics of Fluids, 18 (2006) 121505.
[114] A. Brotchie, X.H. Zhang, Response of interfacial nanobubbles to ultrasound irradiation, Soft Matter, 7 (2011) 265-269.
[115] V. Belova, D.A. Gorin, D.G. Shchukin, H. Mohwald, Selective ultrasonic cavitation on patterned hydrophobic surfaces, Angew Chem Int Ed Engl, 49 (2010) 7129-7133.
[116] V. Belova, D.G. Shchukin, D.A. Gorin, A. Kopyshev, H. Mohwald, A new approach to nucleation of cavitation bubbles at chemically modified surfaces, Phys Chem Chem Phys, 13 (2011) 8015-8023.
[117] V. Belova, M. Krasowska, D. Wang, J. Ralston, D.G. Shchukin, H. Möhwald, Influence of adsorbed gas at liquid/solid interfaces on heterogeneous cavitation, Chem. Sci., 4 (2013) 248-256.
[118] V. Belova, D.A. Gorin, D.G. Shchukin, H. Mohwald, Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces, ACS Appl Mater Interfaces, 3 (2011) 417-425.
[119] D.G. Shchukin, E. Skorb, V. Belova, H. Mohwald, Ultrasonic cavitation at solid surfaces, Adv Mater, 23 (2011) 1922-1934.
[120] L. Zhang, V. Belova, H. Wang, W. Dong, H. Möhwald, Controlled Cavitation at Nano/Microparticle Surfaces, Chemistry of Materials, 26 (2014) 2244-2248.
[121] X.H. Zhang, X.D. Zhang, J.L. Sun, Z.X. Zhang, G. Li, H.P. Fang, X.D. Xiao, X.C. Zeng, J. Hu, Detection of novel gaseous states at the highly oriented pyrolytic graphite-water interface, Langmuir, 23 (2007) 1778-1783.
[122] J.R. Seddon, D. Lohse, Nanobubbles and micropancakes: gaseous domains on immersed substrates, J Phys Condens Matter, 23 (2011) 133001.
[123] J.W. Yang, J.M. Duan, D. Fornasiero, J. Ralston, Very small bubble formation at the solid-water interface, Journal of Physical Chemistry B, 107 (2003) 6139-6147.
[124] A. Agrawal, J. Park, D.Y. Ryu, P.T. Hammond, T.P. Russell, G.H. McKinley, Controlling the location and spatial extent of nanobubbles using hydrophobically nanopatterned surfaces, Nano Letters, 5 (2005) 1751-1756.
[125] K. Koch, B. Bhushan, W. Barthlott, Multifunctional surface structures of plants: An inspiration for biomimetics, Progress in Materials Science, 54 (2009) 137-178.
[126] C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann Bot-London, 79 (1997) 667-677.
[127] K. Koch, W. Barthlott, Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials, Philos Trans A Math Phys Eng Sci, 367 (2009) 1487-1509.
[128] A. Balmert, H. Florian Bohn, P. Ditsche-Kuru, W. Barthlott, Dry under water: comparative morphology and functional aspects of air-retaining insect surfaces, J Morphol, 272 (2011) 442-451.
[129] E. Bormashenko, O. Gendelman, G. Whyman, Superhydrophobicity of Lotus Leaves versus Birds Wings: Different Physical Mechanisms Leading to Similar Phenomena, Langmuir, 28 (2012) 14992-14997.
[130] B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Progress in Materials Science, 56 (2011) 1-108.
[131] H.K. Webb, R.J. Crawford, E.P. Ivanova, Wettability of natural superhydrophobic surfaces, Adv Colloid Interfac, 210 (2014) 58-64.
[132] Z.G. Guo, W.M. Liu, B.L. Su, Superhydrophobic surfaces: From natural to biomimetic to functional, J Colloid Interf Sci, 353 (2011) 335-355.
[133] K. Koch, W. Barthlott, Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials, Philos T R Soc A, 367 (2009) 1487-1509.
[134] G. Ciasca, M. Papi, L. Businaro, G. Campi, M. Ortolani, V. Palmieri, A. Cedola, A. De Ninno, A. Gerardino, G. Maulucci, M. De Spirito, Recent advances in superhydrophobic surfaces and their relevance to biology and medicine, Bioinspir Biomim, 11 (2016) 011001.
[135] X.M. Li, D. Reinhoudt, M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces, Chem Soc Rev, 36 (2007) 1350-1368.
[136] J. Li, J. Fu, Y. Cong, Y. Wu, L.J. Xue, Y.C. Han, Macroporous fluoropolymeric films templated by silica colloidal assembly: A possible route to super-hydrophobic surfaces, Applied Surface Science, 252 (2006) 2229-2234.
[137] Y.H. Sung, Y.D. Kim, H.J. Choi, R. Shin, S. Kang, H. Lee, Fabrication of superhydrophobic surfaces with nano-in-micro structures using UV-nanoimprint lithography and thermal shrinkage films, Applied Surface Science, 349 (2015) 169-173.
[138] K.J. Bachus, L. Mats, H.W. Choi, G.T.T. Gibson, R.D. Oleschuk, Fabrication of Patterned Superhydrophobic/Hydrophilic Substrates by Laser Micromachining for Small Volume Deposition and Droplet Based Fluorescence, Acs Appl Mater Inter, 9 (2017) 7629-7636.
[139] Y.X. Cai, T.W. Coyle, G. Azimi, J. Mostaghimi, Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray, Scientific Reports, 6 (2016) 24670.
[140] V. Stelmashuk, H. Biederman, D. Slavinska, J. Zemek, M. Trchova, Plasma polymer films rf sputtered from PTFE under various argon pressures, Vacuum, 77 (2005) 131-137.
[141] R. Thiruvengadathan, V. Korampally, A. Ghosh, N. Chanda, K. Gangopadhyay, S. Gangopadhyay, Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches, Rep Prog Phys, 76 (2013) 066501.
[142] E. Hosono, S. Fujihara, I. Honma, H.S. Zhou, Superhydrophobic perpendicular nanopin film by the bottom-up process, Journal of the American Chemical Society, 127 (2005) 13458-13459.
[143] H. Liu, L. Feng, J. Zhai, L. Jiang, D.B. Zhu, Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity, Langmuir, 20 (2004) 5659-5661.
[144] N. Zhao, F. Shi, Z.Q. Wang, X. Zhang, Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces, Langmuir, 21 (2005) 4713-4716.
[145] F. Shi, Z.Q. Wang, X. Zhang, Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders, Advanced Materials, 17 (2005) 1005-1009.
[146] G. Zhang, D.Y. Wang, Z.Z. Gu, H. Mohwald, Fabrication of superhydrophobic surfaces from binary colloidal assembly, Langmuir, 21 (2005) 9143-9148.
[147] S.S. Latthe, H. Imai, V. Ganesan, A. Venkateswara Rao, Porous superhydrophobic silica films by sol–gel process, Microporous and Mesoporous Materials, 130 (2010) 115-121.
[148] J.T. Han, D.H. Lee, C.Y. Ryu, K.W. Cho, Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding, Journal of the American Chemical Society, 126 (2004) 4796-4797.
[149] B.D. Hatton, J. Aizenberg, Writing on Superhydrophobic Nanopost Arrays: Topographic Design for Bottom-up Assembly, Nano Letters, 12 (2012) 4551-4557.
[150] O.I. Vinogradova, A.L. Dubov, Superhydrophobic Textures for Microfluidics, Mendeleev Communications, 22 (2012) 229-236.
[151] T. Sun, G.J. Wang, H. Liu, L. Feng, L. Jiang, D.B. Zhu, Control over the wettability of an aligned carbon nanotube film, Journal of the American Chemical Society, 125 (2003) 14996-14997.
[152] M.L. Ma, Y. Mao, M. Gupta, K.K. Gleason, G.C. Rutledge, Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition, Macromolecules, 38 (2005) 9742-9748.
[153] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, The lowest surface free energy based on -CF3 alignment, Langmuir, 15 (1999) 4321-4323.
[154] E.F. Hare, E.G. Shafrin, W.A. Zisman, Properties of Films of Adsorbed Fluorinated Acids, J Phys Chem-Us, 58 (1954) 236-239.
[155] G. Godeau, C.R. Szczepanski, T. Darmanin, F. Guittard, Nanoparticle covered surfaces: An efficient way to enhance superhydrophobic properties, Mater Design, 92 (2016) 911-918.
[156] H. Ogihara, J. Okagaki, T. Saji, Facile Fabrication of Colored Superhydrophobic Coatings by Spraying a Pigment Nanoparticle Suspension, Langmuir, 27 (2011) 9069-9072.
[157] S. Ghosh, Three-dimensional microplate formation with evaporating nanoparticle suspensions on superhydrophobic surfaces, Colloid Surface A, 529 (2017) 901-906.
[158] C.C.M.C. Carcouët, A.C.C. Esteves, M.M.R.M. Hendrix, R.A.T.M. van Benthem, G. de With, Fine-Tuning of Superhydrophobicity Based on Monolayers of Well-defined Raspberry Nanoparticles with Variable Dual-roughness Size and Ratio, Advanced Functional Materials, 24 (2014) 5745-5752.
[159] X. Du, J. He, A self-templated etching route to surface-rough silica nanoparticles for superhydrophobic coatings, ACS Appl Mater Interfaces, 3 (2011) 1269-1276.
[160] N. Gao, Y. Yan, Characterisation of surface wettability based on nanoparticles, Nanoscale, 4 (2012) 2202-2218.
[161] X. Du, X.M. Liu, H.M. Chen, J.H. He, Facile Fabrication of Raspberry-like Composite Nanoparticles and Their Application as Building Blocks for Constructing Superhydrophilic Coatings, J Phys Chem C, 113 (2009) 9063-9070.
[162] R. Mohammadi, J. Wassink, A. Amirfazli, Effect of Surfactants on wetting of super-hydrophobic surfaces, Langmuir, 20 (2004) 9657-9662.
[163] M. Ferrari, F. Ravera, S. Rao, L. Liggieri, Surfactant adsorption at superhydrophobic surfaces, Applied Physics Letters, 89 (2006) 053104.
[164] F.M. Chang, Y.J. Sheng, H. Chen, H.K. Tsao, From superhydrophobic to superhydrophilic surfaces tuned by surfactant solutions, Applied Physics Letters, 91 (2007) 094108.
[165] E. Ueda, P.A. Levkin, Emerging Applications of Superhydrophilic-Superhydrophobic Micropatterns, Advanced Materials, 25 (2013) 1234-1247.
[166] F.L. Geyer, E. Ueda, U. Liebel, N. Grau, P.A. Levkin, Superhydrophobic-Superhydrophilic Micropatterning: Towards Genome-on-a-Chip Cell Microarrays, Angew Chem Int Edit, 50 (2011) 8424-8427.
[167] J.Y. Shiu, C.W. Kuo, W.T. Whang, P.L. Chen, Addressable Cell Microarrays via Switchable Superhydrophobic Surfaces, J Adhes Sci Technol, 24 (2010) 1023-1030.
[168] A.I. Neto, C.A. Custodio, W.L. Song, J.F. Mano, High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates, Soft Matter, 7 (2011) 4147-4151.
[169] T.L. Sun, H. Tan, D. Han, Q. Fu, L. Jiang, No platelet can adhere - Largely improved blood compatibility on nanostructured superhydrophobic surfaces, Small, 1 (2005) 959-963.
[170] Q.L. Huang, Y. Yang, R.G. Hu, C.J. Lin, L. Sun, E.A. Vogler, Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel, Colloid Surface B, 125 (2015) 134-141.
[171] M.P. Sousa, J.F. Mano, Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing, Cellulose, 20 (2013) 2185-2190.
[172] E. Gogolides, K. Ellinas, A. Tserepi, Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems, Microelectron Eng, 132 (2015) 135-155.
[173] L. Hong, T. Pan, Surface microfluidics fabricated by photopatternable superhydrophobic nanocomposite, Microfluidics and Nanofluidics, 10 (2010) 991-997.
[174] S.T. Yohe, Y.L. Colson, M.W. Grinstaff, Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates, J Am Chem Soc, 134 (2012) 2016-2019.
[175] E.J. Falde, J.D. Freedman, V.L. Herrera, S.T. Yohe, Y.L. Colson, M.W. Grinstaff, Layered superhydrophobic meshes for controlled drug release, J Control Release, 214 (2015) 23-29.
[176] S.T. Yohe, J.A. Kopechek, T.M. Porter, Y.L. Colson, M.W. Grinstaff, Triggered drug release from superhydrophobic meshes using high-intensity focused ultrasound, Adv Healthc Mater, 2 (2013) 1204-1208.
[177] W.C. Culp, R. Flores, A.T. Brown, J.D. Lowery, P.K. Roberson, L.J. Hennings, S.D. Woods, J.H. Hatton, B.C. Culp, R.D. Skinner, M.J. Borrelli, Successful Microbubble Sonothrombolysis Without Tissue-Type Plasminogen Activator in a Rabbit Model of Acute Ischemic Stroke, Stroke, 42 (2011) 2280-2285.
[178] A. Soltani, Application of cavitation promoting surfaces in management of acute ischemic stroke, Ultrasonics, 53 (2013) 580-587.
[179] D. Fernandez Rivas, A. Prosperetti, A.G. Zijlstra, D. Lohse, H.J. Gardeniers, Efficient sonochemistry through microbubbles generated with micromachined surfaces, Angew Chem Int Ed Engl, 49 (2010) 9699-9701.
[180] L. Stricker, B. Dollet, D. Fernandez Rivas, D. Lohse, Interacting bubble clouds and their sonochemical production, J Acoust Soc Am, 134 (2013) 1854-1862.
[181] D. Fernandez Rivas, L. Stricker, A.G. Zijlstra, H.J. Gardeniers, D. Lohse, A. Prosperetti, Ultrasound artificially nucleated bubbles and their sonochemical radical production, Ultrason Sonochem, 20 (2013) 510-524.
[182] J.J. Kwan, S. Graham, R. Myers, R. Carlisle, E. Stride, C.C. Coussios, Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles, Phys Rev E Stat Nonlin Soft Matter Phys, 92 (2015) 023019.
[183] J.J. Kwan, R. Myers, C.M. Coviello, S.M. Graham, A.R. Shah, E. Stride, R.C. Carlisle, C.C. Coussios, Ultrasound-Propelled Nanocups for Drug Delivery, Small, 11 (2015) 5305-5314.
[184] R. Myers, C. Coviello, P. Erbs, J. Foloppe, C. Rowe, J. Kwan, C. Crake, S. Finn, E. Jackson, J.M. Balloul, C. Story, C. Coussios, R. Carlisle, Polymeric Cups for Cavitation-mediated Delivery of Oncolytic Vaccinia Virus, Mol Ther, 24 (2016) 1627-1633.
[185] A. Yildirim, R. Chattaraj, N.T. Blum, G.M. Goldscheitter, A.P. Goodwin, Stable Encapsulation of Air in Mesoporous Silica Nanoparticles: Fluorocarbon-Free Nanoscale Ultrasound Contrast Agents, Advanced Healthcare Materials, 5 (2016) 1290-1298.
[186] A. Yildirim, R. Chattaraj, N.T. Blum, A.P. Goodwin, Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy, Chemistry of Materials, 28 (2016) 5962-5972.
[187] A. Yildirim, R. Chattaraj, N.T. Blum, D. Shi, K. Kumar, A.P. Goodwin, Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation, Advanced Healthcare Materials, 6 (2017) doi: 10.1002/adhm.201700514. Epub 2017 Jul 12.
[188] Y. Zhao, Y. Zhu, J. Fu, L. Wang, Effective cancer cell killing by hydrophobic nanovoid-enhanced cavitation under safe low-energy ultrasound, Chem Asian J, 9 (2014) 790-796.
[189] Y. Zhao, Y. Zhu, Synergistic cytotoxicity of low-energy ultrasound and innovative mesoporous silica-based sensitive nanoagents, Journal of Materials Science, 49 (2014) 3665-3673.
[190] J.J. Kwan, G. Lajoinie, N. de Jong, E. Stride, M. Versluis, C.C. Coussios, Ultrahigh-Speed Dynamics of Micrometer-Scale Inertial Cavitation from Nanoparticles, Physical Review Applied, 6 (2016) 044004.
[191] K.S. Suslick, D.J. Flannigan, Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation, Annual Review of Physical Chemistry, 59 (2008) 659-683.
[192] X.H. Zhang, A. Quinn, W.A. Ducker, Nanobubbles at the interface between water and a hydrophobic solid, Langmuir, 24 (2008) 4756-4764.
[193] H. Peng, M.A. Hampton, A.V. Nguyen, Nanobubbles do not sit alone at the solid-liquid interface, Langmuir, 29 (2013) 6123-6130.
[194] A. Zijlstra, D. Fernandez Rivas, H.J. Gardeniers, M. Versluis, D. Lohse, Enhancing acoustic cavitation using artificial crevice bubbles, Ultrasonics, 56 (2015) 512-523.
[195] D. Fernandez Rivas, J. Betjes, B. Verhaagen, W. Bouwhuis, T.C. Bor, D. Lohse, H.J.G.E. Gardeniers, Erosion evolution in mono-crystalline silicon surfaces caused by acoustic cavitation bubbles, Journal of Applied Physics, 113 (2013) 064902.
[196] B.M. Borkent, M. Arora, C.D. Ohl, Reproducible cavitation activity in water-particle suspensions, Journal of the Acoustical Society of America, 121 (2007) 1406-1412.
[197] C.H. Fan, W.H. Lin, C.Y. Ting, W.Y. Chai, T.C. Yen, H.L. Liu, C.K. Yeh, Contrast-Enhanced Ultrasound Imaging for the Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening, Theranostics, 4 (2014) 1014-1025.
[198] K. Johnston, C. Tapia-Siles, B. Gerold, M. Postema, S. Cochran, A. Cuschieri, P. Prentice, Periodic shock-emission from acoustically driven cavitation clouds: A source of the subharmonic signal, Ultrasonics, 54 (2014) 2151-2158.
[199] E. Cramer, W. Lauterborn, Acoustic Cavitation Noise Spectra, Appl Sci Res, 38 (1982) 209-214.
[200] E.C. Everbach, I.R.S. Makin, M. Azadniv, R.S. Meltzer, Correlation of ultrasound-induced hemolysis with cavitation detector output in vitro, Ultrasound in Medicine and Biology, 23 (1997) 619-624.
[201] W.-S. Chen, A.A. Brayman, T.J. Matula, L.A. Crum, Inertial cavitation dose and hemolysis produced in vitro with or without Optison®, Ultrasound in Medicine & Biology, 29 (2003) 725-737.
[202] A.D. Maxwell, C.A. Cain, T.L. Hall, J.B. Fowlkes, Z. Xu, Probability of Cavitation for Single Ultrasound Pulses Applied to Tissues and Tissue-Mimicking Materials, Ultrasound in Medicine and Biology, 39 (2013) 449-465.
[203] S.T. Kang, J.L. Lin, C.H. Wang, Y.C. Chang, C.K. Yeh, Internal polymer scaffolding in lipid-coated microbubbles for control of inertial cavitation in ultrasound theranostics, J Mater Chem B, 3 (2015) 5938-5941.
[204] S.-H. Cho, J.-Y. Kim, J.-H. Chun, J.-D. Kim, Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269 (2005) 28-34.
[205] E. Ruckenstein, Nanodispersions of bubbles and oil drops in water, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 423 (2013) 112-114.
[206] F. Magaletti, L. Marino, C.M. Casciola, Shock Wave Formation in the Collapse of a Vapor Nanobubble, Physical Review Letters, 114 (2015) 064501.
[207] E.A. Brujan, T. Ikeda, Y. Matsumoto, Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound, Phys Med Biol, 50 (2005) 4797-4809.
[208] C.H. Wang, J.C. Cheng, Cavitation microstreaming generated by a bubble pair in an ultrasound field, Journal of the Acoustical Society of America, 134 (2013) 1675-1682.
[209] P. Riesz, D. Berdahl, C.L. Christman, Free-Radical Generation by Ultrasound in Aqueous and Nonaqueous Solutions, Environ Health Persp, 64 (1985) 233-252.
[210] V. Frenkel, Ultrasound mediated delivery of drugs and genes to solid tumors, Adv Drug Deliver Rev, 60 (2008) 1193-1208.
[211] M. Trendowski, The promise of sonodynamic therapy, Cancer Metastasis Rev, 33 (2014) 143-160.
[212] K. Tachibana, L.B. Feril, Jr., Y. Ikeda-Dantsuji, Sonodynamic therapy, Ultrasonics, 48 (2008) 253-259.
[213] Z.Y. Xu, C. Carlson, J. Snell, M. Eames, A. Hananel, M.B. Lopes, P. Raghavan, C.C. Lee, C.P. Yen, D. Schlesinger, N.F. Kassell, J.F. Aubry, J. Sheehan, Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation, J Neurosurg, 122 (2015) 152-161.
[214] C.D. Arvanitis, N. Vykhodtseva, F. Jolesz, M. Livingstone, N. McDannold, Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model, J Neurosurg, 124 (2016) 1450-1459.
[215] J.P. Kilroy, J.A. Hossack, A.L. Klibanov, B.R. Wamhoff, Multifunction Intravascular Ultrasound for Microbubble Based Drug Delivery, 2012 Ieee International Ultrasonics Symposium (Ius), (2012) 2168-2171.
[216] C.H. Fan, Y.H. Cheng, C.Y. Ting, Y.J. Ho, P.H. Hsu, H.L. Liu, C.K. Yeh, Ultrasound/Magnetic Targeting with SPIO-DOX-Microbubble Complex for Image-Guided Drug Delivery in Brain Tumors, Theranostics, 6 (2016) 1542-1556.
[217] G.L. Britton, H. Kim, P.H. Kee, J. Aronowski, C.K. Holland, D.D. McPherson, S.L. Huang, In vivo therapeutic gas delivery for neuroprotection with echogenic liposomes, Circulation, 122 (2010) 1578-1587.
[218] O.D. Kripfgans, M. Zhang, M.L. Fabiilli, P.L. Carson, F. Padilla, S.D. Swanson, C. Mougenot, J.B. Fowlkes, C. Mougenot, Acceleration of ultrasound thermal therapy by patterned acoustic droplet vaporization, Journal of the Acoustical Society of America, 135 (2014) 537-544.
[219] M. Zhang, M.L. Fabiilli, K.J. Haworth, F. Padilla, S.D. Swanson, O.D. Kripfgans, P.L. Carson, J.B. Fowlkes, Acoustic Droplet Vaporization for Enhancement of Thermal Ablation by High Intensity Focused Ultrasound, Academic Radiology, 18 (2011) 1123-1132.
[220] M. Rubiera, M. Ribo, R. Delgado-Mederos, E. Santamarina, R. Huertas, P. Delgado, J. Montaner, J. Alvarez-Sabin, C.A. Molina, Efficacy of microbubble-enhanced sonothrombolysis among stroke subtypes, Stroke, 37 (2006) 621-621.
[221] A. Yildirim, R. Chattaraj, N.T. Blum, A.P. Goodwin, Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy, Chem Mater, 28 (2016) 5962-5972.
[222] Q.F. Jin, S.T. Kang, Y.C. Chang, H.R. Zheng, C.K. Yeh, Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation, Ultrasonics Sonochemistry, 32 (2016) 1-7.
[223] R.L. Manthe, S.P. Foy, N. Krishnamurthy, B. Sharma, V. Labhasetwar, Tumor Ablation and Nanotechnology, Mol Pharmaceut, 7 (2010) 1880-1898.
[224] X. Qian, Y. Zheng, Y. Chen, Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation, Adv Mater, 28 (2016) 8097-8129.
[225] A. Giacomello, M. Chinappi, S. Meloni, C.M. Casciola, Geometry as a catalyst: how vapor cavities nucleate from defects, Langmuir, 29 (2013) 14873-14884.
[226] S. Meloni, A. Giacomello, C.M. Casciola, Focus Article: Theoretical aspects of vapor/gas nucleation at structured surfaces, Journal of Chemical Physics, 145 (2016) 211802.
[227] C.D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, D. Lohse, Sonoporation from jetting cavitation bubbles, Biophysical Journal, 91 (2006) 4285-4295.
[228] P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, P. Campbell, Membrane disruption by optically controlled microbubble cavitation, Nature Physics, 1 (2005) 107-110.
[229] T. Li, H. Chen, T. Khokhlova, Y.N. Wang, W. Kreider, X.M. He, J.H. Hwang, Passive Cavitation Detection during Pulsed Hifu Exposures of Ex Vivo Tissues and in Vivo Mouse Pancreatic Tumors, Ultrasound in Medicine and Biology, 40 (2014) 1523-1534.
[230] J. Gateau, J.F. Aubry, M. Pernot, M. Fink, M. Tanter, Combined Passive Detection and Ultrafast Active Imaging of Cavitation Events Induced by Short Pulses of High-Intensity Ultrasound, Ieee T Ultrason Ferr, 58 (2011) 517-532.
[231] M. Gyongy, C.C. Coussios, Passive cavitation mapping for localization and tracking of bubble dynamics, Journal of the Acoustical Society of America, 128 (2010) E175-E180.
[232] Z. Alothman, A Review: Fundamental Aspects of Silicate Mesoporous Materials, Materials, 5 (2012) 2874-2902.
[233] V. Mamaeva, C. Sahlgren, M. Linden, Mesoporous silica nanoparticles in medicine--recent advances, Adv Drug Deliv Rev, 65 (2013) 689-702.
[234] A. Liberman, N. Mendez, W.C. Trogler, A.C. Kummel, Synthesis and surface functionalization of silica nanoparticles for nanomedicine, Surf Sci Rep, 69 (2014) 132-158.
[235] P.-K. Chen, N.-C. Lai, C.-H. Ho, Y.-W. Hu, J.-F. Lee, C.-M. Yang, New Synthesis of MCM-48 Nanospheres and Facile Replication to Mesoporous Platinum Nanospheres as Highly Active Electrocatalysts for the Oxygen Reduction Reaction, Chemistry of Materials, 25 (2013) 4269-4277.
[236] W. Stober, A. Fink, E. Bohn, Controlled Growth of Monodisperse Silica Spheres in Micron Size Range, J Colloid Interf Sci, 26 (1968) 62-69.
[237] J.R. Lindner, J. Song, J. Christiansen, A.L. Klibanov, F. Xu, K. Ley, Ultrasound Assessment of Inflammation and Renal Tissue Injury With Microbubbles Targeted to P-Selectin, Circulation, 104 (2001) 2107-2112.
[238] P.A. Dayton, K.W. Ferrara, Targeted imaging using ultrasound, J Magn Reson Imaging, 16 (2002) 362-377.
[239] K.W. Ferrara, M.A. Borden, H. Zhang, Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery, Acc Chem Res, 42 (2009) 881-892.
[240] K. Takegami, Y. Kaneko, T. Watanabe, T. Maruyama, Y. Matsumoto, H. Nagawa, Erythrocytes, as well as microbubble contrast agents, are important factors in improving thermal and therapeutic effects of high-intensity focused ultrasound, Ultrasound in Medicine and Biology, 31 (2005) 385-390.
[241] M. Rubiera, M. Ribo, R. Delgado-Mederos, J. Montaner, J. Alvarez-Sabin, C.A. Molina, Does the type of ultrasound contrast agent affect recanalization after microbubble-enhanced sonothrombolysis in acute ischemic stroke?, Stroke, 37 (2006) 651-651.
[242] R. Flores, L.J. Hennings, J.D. Lowery, A.T. Brown, W.C. Culp, Microbubble-Augmented Ultrasound Sonothrombolysis Decreases Intracranial Hemorrhage in a Rabbit Model of Acute Ischemic Stroke, Invest Radiol, 46 (2011) 419-424.
[243] M.A. Wheatley, F. Forsberg, N. Dube, M. Patel, B.E. Oeffinger, Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging, Ultrasound Med Biol, 32 (2006) 83-93.
[244] H. Wu, N.G. Rognin, T.M. Krupka, L. Solorio, H. Yoshiara, G. Guenette, C. Sanders, N. Kamiyama, A.A. Exner, Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents, Ultrasound Med Biol, 39 (2013) 2137-2146.
[245] S.L. Huang, R.C. MacDonald, Acoustically active liposomes for drug encapsulation and ultrasound-triggered release, Biochim Biophys Acta, 1665 (2004) 134-141.
[246] S.L. Huang, D.D. McPherson, R.C. Macdonald, A method to co-encapsulate gas and drugs in liposomes for ultrasound-controlled drug delivery, Ultrasound Med Biol, 34 (2008) 1272-1280.
[247] J.M. Gorce, M. Arditi, M. Schneider, Influence of bubble size distribution on the echogenicity of ultrasound contrast agents - A study of SonoVue (TM), Invest Radiol, 35 (2000) 661-671.
[248] N.Y. Rapoport, D.A. Christensen, H.D. Fain, L. Barrows, Z. Gao, Ultrasound-triggered drug targeting of tumors in vitro and in vivo, Ultrasonics, 42 (2004) 943-950.
[249] P.S. Sheeran, V.P. Wong, S. Luois, R.J. McFarland, W.D. Ross, S. Feingold, T.O. Matsunaga, P.A. Dayton, Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging, Ultrasound in Medicine and Biology, 37 (2011) 1518-1530.
[250] C. Orifici, J. Kruecker, O. Kripfgans, B. Fowlkes, P. Carson, An ultrasound test object utilizing acoustic droplet vaporization (ADV) to produce distributed point target scatterers, Med Phys, 29 (2002) 1292-1292.
[251] M.L. Fabiilli, K.J. Haworth, I.E. Sebastian, O.D. Kripfgans, P.L. Carson, J.B. Fowlkes, Delivery of Chlorambucil Using an Acoustically-Triggered Perfluoropentane Emulsion, Ultrasound in Medicine and Biology, 36 (2010) 1364-1375.
[252] M.L. Fabiilli, I.E. Sebastian, J.B. Fowlkes, Development of an Acoustic Droplet Vaporization, Ultrasound Drug Delivery Emulsion, Aip Conf Proc, 1215 (2010) 295-298.
[253] N. Rapoport, K.H. Nam, R. Gupta, Z.G. Gao, P. Mohan, A. Payne, N. Todd, X. Liu, T. Kim, J. Shea, C. Scaife, D.L. Parker, E.K. Jeong, A.M. Kennedy, Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions, Journal of Controlled Release, 153 (2011) 4-15.
[254] Y.J. Ho, Y.C. Chang, C.K. Yeh, Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization, Theranostics, 6 (2016) 392-403.
[255] P.S. Sheeran, P.A. Dayton, Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects, Scientifica (Cairo), 2014 (2014) 579684.
[256] A. Yildirim, R. Chattaraj, N.T. Blum, G.M. Goldscheitter, A.P. Goodwin, Stable Encapsulation of Air in Mesoporous Silica Nanoparticles: Fluorocarbon-Free Nanoscale Ultrasound Contrast Agents, Adv Healthc Mater, 5 (2016) 1290-1298.
[257] C. Barbé, J. Bartlett, L. Kong, K. Finnie, H.Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja, Silica Particles: A Novel Drug-Delivery System, Advanced Materials, 16 (2004) 1959-1966.
[258] L.S. Wang, L.C. Wu, S.Y. Lu, L.L. Chang, I.T. Teng, C.M. Yang, J.A.A. Ho, Biofunctionalized Phospholipid-Capped Mesoporous Silica Nanoshuttles for Targeted Drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding, Acs Nano, 4 (2010) 4371-4379.
[259] C. Morelli, P. Maris, D. Sisci, E. Perrotta, E. Brunelli, I. Perrotta, M.L. Panno, A. Tagarelli, C. Versace, M.F. Casula, F. Testa, S. Ando, J.B. Nagy, L. Pasqua, PEG-templated mesoporous silica nanoparticles exclusively target cancer cells, Nanoscale, 3 (2011) 3198-3207.
[260] N. Barkalina, C. Jones, H. Townley, K. Coward, Functionalization of mesoporous silica nanoparticles with a cell-penetrating peptide to target mammalian sperm in vitro, Nanomedicine, 10 (2015) 1539-1553.
[261] C. de la Torre, I. Casanova, G. Acosta, C. Coll, M.J. Moreno, F. Albericio, E. Aznar, R. Mangues, M. Royo, F. Sancenon, R. Martinez-Manez, Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells, Advanced Functional Materials, 25 (2015) 687-695.
[262] R. Namgung, Y. Zhang, Q.L. Fang, K. Singha, H.J. Lee, I.K. Kwon, Y.Y. Jeong, I.K. Park, S.J. Son, W.J. Kim, Multifunctional silica nanotubes for dual-modality gene delivery and MR imaging, Biomaterials, 32 (2011) 3042-3052.
[263] M.S. Bradbury, E. Phillips, P.H. Montero, S.M. Cheal, H. Stambuk, J.C. Durack, C.T. Sofocleous, R.J.C. Meester, U. Wiesner, S. Patel, Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions, Integr Biol-Uk, 5 (2013) 74-86.
[264] K. Hynynen, N. McDannold, H. Martin, F.A. Jolesz, N. Vykhodtseva, The threshold for brain damage in rabbits induced by bursts of ultrasound in the presence of an ultrasound contrast agent (Optison (R)), Ultrasound in Medicine and Biology, 29 (2003) 473-481.
[265] S.M. Graham, R. Carlisle, J.J. Choi, M. Stevenson, A.R. Shah, R.S. Myers, K. Fisher, M.B. Peregrino, L. Seymour, C.C. Coussios, Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes, Journal of Controlled Release, 178 (2014) 101-107.
[266] S.K. Wu, P.C. Chu, W.Y. Chai, S.T. Kang, C.H. Tsai, C.H. Fan, C.K. Yeh, H.L. Liu, Characterization of Different Microbubbles in Assisting Focused Ultrasound-Induced Blood-Brain Barrier Opening, Scientific Reports, 7 (2017) 46689.
[267] D.R. Morel, I. Schwieger, L. Hohn, J. Terrettaz, J.B. Llull, Y.A. Cornioley, M. Schneider, Human pharmacokinetics and safety evaluation of SonoVue (TM), a new contrast agent for ultrasound imaging, Invest Radiol, 35 (2000) 80-85.
[268] D.E. Goertz, C. Wright, K. Hynynen, Contrast agent kinetics in the rabbit brain during exposure to therapeutic ultrasound, Ultrasound Med Biol, 36 (2010) 916-924.
[269] J.L. Paris, M.V. Cabanas, M. Manzano, M. Vallet-Regi, Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers, Acs Nano, 9 (2015) 11023-11033.
[270] A. Yildirim, R. Chattaraj, N.T. Blum, D. Shi, K. Kumar, A.P. Goodwin, Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation, Adv Healthc Mater, (2017) doi: 10.1002/adhm.201700514.
[271] J.J. Kwan, C.C. Coussios, Triggered Drug Release and Enhanced Drug Transport from Ultrasound-Responsive Nanoparticles, Design and Applications of Nanoparticles in Biomedical Imaging2017, pp. 277-297.
[272] N. Lai, C. Lin, P. Ku, L. Chang, K. Liao, W. Lin, C. Yang, Hollow mesoporous Ia3d silica nanospheres with singleunit-cell-thick shell: Spontaneous formation and drug delivery application, Nano Research, 7 (2014) 1439-1448.
[273] P.M. Dove, N. Han, A.F. Wallace, J.J. De Yoreo, Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs, P Natl Acad Sci USA, 105 (2008) 9903-9908.
[274] A.F. Wallace, G.V. Gibbs, P.M. Dove, Influence of Ion-Associated Water on the Hydrolysis of Si-O Bonded Interactions, Journal of Physical Chemistry A, 114 (2010) 2534-2542.
[275] A. Leemann, G. Le Saout, F. Winnefeld, D. Rentsch, B. Lothenbach, Alkali-Silica Reaction: the Influence of Calcium on Silica Dissolution and the Formation of Reaction Products, J Am Ceram Soc, 94 (2011) 1243-1249.
[276] B. Helfield, J.J. Black, B. Qin, J. Pacella, X. Chen, F.S. Villanueva, Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles, Ultrasound Med Biol, 42 (2016) 782-794.
[277] S. Hernot, A.L. Klibanov, Microbubbles in ultrasound-triggered drug and gene delivery, Adv Drug Deliver Rev, 60 (2008) 1153-1166.
[278] T. Kodama, N. Tomita, Y. Yagishita, S. Horie, K. Funamoto, T. Hayase, M. Sakamoto, S. Mori, Volumetric and Angiogenic Evaluation of Antitumor Effects with Acoustic Liposome and High-Frequency Ultrasound, Cancer Research, 71 (2011) 6957-6964.
[279] T.L. Chang, S.T. Kang, C.K. Yeh, High-Speed Fluorescence Imaging of Ultrasound-Triggered Drug Release from Phase-Change Droplets, 2014 Ieee International Ultrasonics Symposium (Ius), (2014) 17-20.
[280] C.H. Wang, S.T. Kang, Y.H. Lee, Y.L. Luo, Y.F. Huang, C.K. Yeh, Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis, Biomaterials, 33 (2012) 1939-1947.
[281] P.A. Dayton, S. Zhao, S.H. Bloch, P. Schumann, K. Penrose, T.O. Matsunaga, R. Zutshi, A. Doinikov, K.W. Ferrara, Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy, Mol Imaging, 5 (2006) 160-174.
[282] Y.J. Ho, C.K. Yeh, Concurrent anti-vascular therapy and chemotherapy in solid tumors using drug-loaded acoustic nanodroplet vaporization, Acta Biomaterialia, 49 (2017) 472-485.
[283] H.Y. Huang, S.H. Hu, S.Y. Hung, C.S. Chiang, H.L. Liu, T.L. Chiu, H.Y. Lai, Y.Y. Chen, S.Y. Chen, SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy, J Control Release, 172 (2013) 118-127.
[284] H.Y. Huang, H.L. Liu, P.H. Hsu, C.S. Chiang, C.H. Tsai, H.S. Chi, S.Y. Chen, Y.Y. Chen, A multitheragnostic nanobubble system to induce blood-brain barrier disruption with magnetically guided focused ultrasound, Adv Mater, 27 (2015) 655-661.
[285] Q. Jin, C.Y. Lin, S.T. Kang, Y.C. Chang, H. Zheng, C.M. Yang, C.K. Yeh, Superhydrophobic silica nanoparticles as ultrasound contrast agents, Ultrason Sonochem, 36 (2017) 262-269.
[286] S.J. Yang, S.M. Dammer, N. Bremond, H.J.W. Zandvliet, E.S. Kooij, D. Lohse, Characterization of nanobubbles on hydrophobic surfaces in water, Langmuir, 23 (2007) 7072-7077.
[287] M. Bazan-Peregrino, B. Rifai, R.C. Carlisle, J. Choi, C.D. Arvanitis, L.W. Seymour, C.C. Coussios, Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound, J Control Release, 169 (2013) 40-47.
[288] I.A. Mudunkotuwa, A.A. Minshid, V.H. Grassian, ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media, Analyst, 139 (2014) 870-881.
[289] J.J. Kuna, K. Voitchovsky, C. Singh, H. Jiang, S. Mwenifumbo, P.K. Ghorai, M.M. Stevens, S.C. Glotzer, F. Stellacci, The effect of nanometre-scale structure on interfacial energy, Nature Materials, 8 (2009) 837-842.
[290] K. Voitchovsky, J.J. Kuna, S.A. Contera, E. Tosatti, F. Stellacci, Direct mapping of the solid-liquid adhesion energy with subnanometre resolution, Nature Nanotechnology, 5 (2010) 401-405.
[291] V.N. Paunov, O.J. Cayre, Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique, Advanced Materials, 16 (2004) 788-791.
[292] O.J. Cayre, V.N. Paunov, Contact angles of colloid silica and gold particles at air-water and oil-water interfaces determined with the gel trapping technique, Langmuir, 20 (2004) 9594-9599.
[293] V.N. Paunov, Novel method for determining the three-phase contact angle of colloid particles adsorbed at air-water and oil-water interfaces, Langmuir, 19 (2003) 7970-7976.
[294] L.N. Arnaudov, O.J. Cayre, M.A. Cohen Stuart, S.D. Stoyanov, V.N. Paunov, Measuring the three-phase contact angle of nanoparticles at fluid interfaces, Phys Chem Chem Phys, 12 (2010) 328-331.
[295] L. Isa, F. Lucas, R. Wepf, E. Reimhult, Measuring single-nanoparticle wetting properties by freeze-fracture shadow-casting cryo-scanning electron microscopy, Nat Commun, 2 (2011) 438.
[296] J. Cheek, A. Steele, I.S. Bayer, E. Loth, Underwater saturation resistance and electrolytic functionality for superhydrophobic nanocomposites, Colloid and Polymer Science, 291 (2013) 2013-2016.
[297] Y. Xue, P. Lv, H. Lin, H. Duan, Underwater Superhydrophobicity: Stability, Design and Regulation, and Applications, Applied Mechanics Reviews, 68 (2016) 030803.
[298] M.M. Amrei, H.V. Tafreshi, Effects of hydrostatic pressure on wetted area of submerged superhydrophobic granular coatings. Part 1: mono-dispersed coatings, Colloid Surface A, 465 (2015) 87-98.
[299] N. Sakai, R. Wang, A. Fujishima, T. Watanabe, K. Hashimoto, Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces, Langmuir, 14 (1998) 5918-5920.
[300] B. Bhushan, Y. Pan, S. Daniels, AFM characterization of nanobubble formation and slip condition in oxygenated and electrokinetically altered fluids, J Colloid Interface Sci, 392 (2013) 105-116.
[301] G.A. Husseini, W.G. Pitt, Micelles and nanoparticles for ultrasonic drug and gene delivery, Adv Drug Deliv Rev, 60 (2008) 1137-1152.
[302] M. Enayati, D. Al Mohazey, M. Edirisinghe, E. Stride, Ultrasound-stimulated drug release from polymer micro and nanoparticles, Bioinspir Biomim Nan, 2 (2013) 3-10.
[303] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat Mater, 12 (2013) 991-1003.