簡易檢索 / 詳目顯示

研究生: 黃培芳
Huang, Pei-Fang
論文名稱: 利用變溫拉曼技術研究異核直線型金屬錯合物二釕鎳及二釕銅二吡啶胺的電子能階
Study of the Electronic States of Linear Heteronuclear Metal-String Complexes Ru2Ni(dpa)4Cl2 and Ru2Cu(dpa)4Cl2 by Temperature-Controlled Raman Spectroscopy
指導教授: 陳益佳
Chen, I-Chia
口試委員: 蔡易州
Tsai, Yi-Chou
鄭銘全
Cheng, Ming-Chuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 86
中文關鍵詞: 拉曼光譜變溫拉曼光譜金屬錯合物
外文關鍵詞: Raman spectroscopy, temperature-controlled Raman spectroscopy, metal string complexes
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為利用變溫拉曼光譜儀偵測異核直線型金屬串錯合物Ru2M(dpa)4Cl2,(dpa = di(2-pyridyl)amide,M = Ni、Cu)及其各自的氧化物晶體的拉曼光譜,並搭配密度泛函理論計算 (Density functional theory, DFT),指認金屬串錯合物的分子結構、振動模式以及電子能階。由於[Ru2]具有多種能量相近、不同價數、不同電子組態的能階,吾人分別對四種金屬串錯合物進行變溫拉曼光譜以及吸收光譜的量測,已知Ru2Ni(dpa)4Cl2的基態為五重態,電子組態為(π*)2(δ*)1、 (dx2–y2)1,金屬價數為[Ru2]5+[Ni]+,而其在500 K時會發生電子轉移,電子由Ni轉移至[Ru2],金屬價數變為[Ru2]4+[Ni]2+,但仍為五重態。而[Ru2Ni(dpa)4Cl2](PF6)在77 K至423 K之間其光譜不會有變化,皆維持在同一個六重態,電子組態為(π*)2(δ*)1、 (dx2–y2)1(dxy)1,金屬價數為[Ru2]5+Ni2+。Ru2Cu(dpa)4Cl2的基態為四重態,電子組態為(π*)2(δ*)1,同樣會在500 K時發生電子轉移,其金屬價數會從[Ru2]5+Cu+變為[Ru2]4+Cu2+,而其電子態仍然維持在四重態。在[Ru2Cu(dpa)4Cl2](PF6)的部分,其在77 K至297 K的溫度範圍內光譜同樣不變,而其基態為五重態,電子組態為(π*)2(δ*)1、 (dx2–y2)1,金屬價數為[Ru2]5+Cu2+,而在此研究中吾人修正了先前對其Ru–Ru伸縮振動模式的指認,由326 cm–1修正為348 cm–1。


    We used temperature-controlled Raman spectroscopy to study the vibrational structures of linear heteronuclear metal-string complexes [Ru2Ni(dpa)4Cl2]0,1+ and [Ru2Cu(dpa)4Cl2]0,1+ (dpa = di(2-pyridyl)amide). From the Raman spectra, Ru–Ru stretching band positions, combining the results of density functional theory calculations, EPR, magnetic measurements, and electronic absorption data, we resolved their vibrational structures and some low-lying electronic states. Complex Ru2Ni(dpa)4Cl2 with a quintet as the ground state, an electron configuration (π*)2(δ*)1–(dx2–y2)1 and [Ru2]5+[Ni]+ core, has the Ru–Ru stretching band, "ν" _"Ru–Ru" , at 333 cm–1 at near 100 K, decreasing to 320 cm–1 at 573 K and 317 cm–1 at 623 K. We proposed that intramolecular charge transfer states with configurations of (π*)2(δ*)2 and (π*)3(δ*)1 arose to have [Ru2]4+[Ni]2+ core at high temperatures. For the oxidized form [Ru2Ni(dpa)4Cl2](PF6) between 77 K and 423 K, "ν" _"Ru–Ru" = 335 cm–1 was unchanged. In Ru2Cu(dpa)4Cl2, "ν" _"Ru–Ru" = 325 cm–1 at 77 K decreasing to 321 cm–1 at 500 K indicating similar charge-transfer reaction occurred at high temperatures. Finally, [Ru2Cu(dpa)4Cl2](PF6) between 77 K and 373 K, has a quintet ground state and an electron configuration (π*)2(δ*)1–(dx2–y2)1 and a [Ru2]5+Cu2+ core. With a [Ru2]5+ core, its "ν" _"Ru–Ru" = 348 cm–1 having the greatest Ru–Ru bond strength among the four complexes studied.

    摘要 i Abstract ii 謝誌 iii 目錄 iv 表目錄 vi 圖目錄 vii 第 1 章 序論 1 1.1 金屬串錯合物 1 1.2 混合金屬串錯合物 1 1.3 直線型三核金屬串錯合物的金屬鍵結理論 2 1.4 研究動機 3 第 2 章 實驗方法 12 2.1 拉曼光譜光路架設 12 2.1.1 雷射光源 12 2.1.2 變溫系統 12 2.1.3 分光系統 13 2.1.4 偵測系統 13 2.2 超低頻拉曼光譜學 13 2.3 還原拉曼光譜 14 2.4 固態晶體拉曼光譜 15 2.5 可見至近紅外區吸收光譜 15 2.6 電子順磁共振光譜 (Electron Paramagnetic Resonance) 15 2.7 理論計算 16 第 3 章 實驗結果 19 3.1 Ru2Ni(dpa)4Cl2 19 3.1.1 磁性與電子順磁共振光譜 19 3.1.2 變溫拉曼光譜 19 3.1.3 電子能態指認 20 3.1.4 吸收光譜 21 3.2 [Ru2Ni(dpa)4Cl2](PF6) 22 3.2.1 磁性與電子順磁共振光譜 22 3.2.2 變溫拉曼光譜 23 3.2.3 電子能態指認 23 3.2.4 吸收光譜 24 3.3 Ru2Cu(dpa)4Cl2 24 3.3.1 磁性與電子順磁共振光譜 24 3.3.2 變溫拉曼光譜 25 3.3.3 電子能態指認 26 3.3.4 吸收光譜 26 3.4 [Ru2Cu(dpa)4Cl2](PF6) 27 3.4.1 磁性與電子順磁共振光譜 27 3.4.2 變溫拉曼光譜 27 3.4.3 電子能態指認 28 3.4.4 吸收光譜 28 3.5 超低拉曼光譜 (10–200 cm–1) 29 第 4 章 總結 76 參考文獻 84

    1.Hurley, T. J.; Robinson, M. A., Nickel(2)-2,2' -Bipyridylamine System .1. Synthesis and Stereochemistry of Complexes. Inorg. Chem. 1968, 7, 33–38.
    2.Aduldecha, S.; Hathaway, B., Crystal structure and electronic properties of tetrakis[µ3-bis(2-pyridyl)amido]dichlorotrinickel(II)–water–acetone (1/0.23/0.5). J. Chem. Soc., Dalton Trans. 1991, 993–998.
    3.Pyrka, G. J.; El-Mekki, M.; Pinkerton, A. A., Structure of the linear trinuclear copper complex, dichlorotetrakis-(di-2-pyridylamido)tricopper. J. Chem. Soc., Chem. Commun. 1991, 84–85.
    4.Cle´rac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X., Further Study of the Linear Trinickel(II) Complex of Dipyridylamide. Inorg. Chem. 1999, 38, 2655–2657.
    5.Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M., Linear trinuclear three-centred metal-metal multiple bonds: Synthesis and crystal structure of [M3(dpa)4Cl2] [M=RuII or RhII, dpa=bis(2-pyridyl)amido anion]. Chem. Commun. 1996, (3), 315–316.
    6.Yang, E.-C.; Cheng, M.-C.; Tsai, M.-S.; Peng, S.-M., Structure of a linear unsymmetrical trinuclear cobalt(II) complex with a localized CoII–CoII bond:dichlorotetrakis[µ3-bis(2-pyridyl)amido]tricobalt(II). J. Chem. Soc., Chem. Commun. 1994, (20), 2377–2378.
    7.Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I., Compounds with linear, bonded trichromium chains. J. Am. Chem. Soc. 1997, 119 (42), 10223–10224.
    8.Peng, S. M.; Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K., One-Dimensional Metal String Complexes. J. Magn. Magn. Mater. 2000, 209, 80–83.
    9.Kitagawa, Y.; Matsui, T.; Nakanishi, Y.; Shigeta, Y.; Kawakami, T.; Okumura, M.; Yamaguchi, K., Theoretical studies of electronic structures, magnetic properties and electron conductivities of one-dimensional Nin (n=3, 5, 7) complexes. Dalton T 2013, 42 (45), 16200–16208.
    10.Liu, I. P.; Lee, G. H.; Peng, S. M.; Benard, M.; Rohmer, M. M., Cu-Pd-Cu and Cu-Pt-Cu linear frameworks:synthesis, magnetic properties, and theoretical analysis of two mixed-metal complexes of dipyridylamide (dpa), isostructural, and isoelectronic with [Cu3(dpa)4Cl2]+. Inorg. Chem. 2007, 46 (23), 9602–9608.
    11.Rohmer, M. M.; Liu, I. P.; Lin, J. C.; Chiu, M. J.; Lee, C. H.; Lee, G. H.; Benard, M.; Lopez, X.; Peng, S. M., Structural, magnetic, and theoretical characterization of a heterometallic polypyridylamide complex. Angew. Chem. Int. Ed. Engl. 2007, 46 (19), 3533–3536.
    12.Huang, G.-C.; Bénard, M.; Rohmer, M.-M.; Li, L.-A.; Chiu, M.-J.; Yeh, C.-Y.; Lee, G.-H.; Peng, S.-M., Ru2M(dpa)4Cl2 (M = Cu, Ni):Synthesis, Characterization, and Theoretical Analysis of Asymmetric Heterometal String Complexes of the Dipyridylamide Family. Eur. J. Inorg. Chem. 2008, 2008 (11), 1767–1777.
    13.Miskowski, V. M.; Gray, H. B., Electronic spectra of Ru2(carboxylate)4+ complexes. Higher energy electronic excited states. Inorg. Chem. 1988, 27 (14), 2501–2506.
    14.Norman, J. G.; Renzoni, G. E.; Case, D. A., Electronic structure of Ru2(O2CR)4+ and Rh2(O2CR)4+ complexes. J. Am. Chem. Soc. 1979, 101 (18), 5256–5267.
    15.Wu, B.-H.; Lin, J.-Y.; Ho, K.-Y.; Huang, M.-J.; Hua, S.-A.; Cheng, M.-C.; Yang, Y.-W.; Peng, S.-M.; Chen, C.-h.; Chen, I. C., Determination of the Valence State of Diruthenium Moiety Using Redox Reactions and Surface-Enhanced Raman Scattering: Application in Heterometal Extended Metal-Atom Chain Diruthenium Nickel Complexes. J. Phys. Chem. C 2016, 120 (36), 20297–20302.
    16.Wu, B. H.; Chung, J. Y.; Hung, L. Y.; Cheng, M. C.; Peng, S. M.; Chen, I. C., Facet-Dependent Reduction Reaction of Diruthenium Metal-String Complexes by Face-to-Face Linked Gold Nanocrystals. ACS Omega 2019, 4 (3), 5327–5334.
    17.謝明勳, 國立台灣大學碩士論文. 九十學年度.
    18.Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. P., Oxidation of Ni3(dpa)4Cl2 and Cu3(dpa)4Cl2:Nickel­–Nickel bonding interaction, but no Copper–Copper bonds. Inorg. Chem. 2003, 42 (7), 2418–2427.
    19.Housecroft, C. E.; Sharpe, A. G., Inorganic Chemistry. 4th Ed. Pearson. 2012, chapter 20.
    20.Larkin, P. J.; Dabros, M.; Sarsfield, B.; Chan, E.; Carriere, J. T.; Smith, B. C., Polymorph Characterization of Active Pharmaceutical Ingredients (APIs) Using Low-Frequency Raman Spectroscopy. Appl. Spectrosc. 2014, 68 (7), 758–776.
    21.Shuker, R.; Gammon, R. W., Raman-Scattering Selection-Rule Breaking and Density of States in Amorphous Materials. Phys. Rev. Lett. 1970, 25 (4), 222–225.
    22.Shigeto, S.; Chang, C. F.; Hiramatsu, H., Directly Probing Intermolecular Structural Change of a Core Fragment of β2-Microglobulin Amyloid Fibrils with Low-Frequency Raman Spectroscopy. J. Phys. Chem. B 2017, 121 (3), 490–496.
    23.Iwata, K.; Okajima, H.; Saha, S.; Hamaguchi, H. O., Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear Raman spectroscopy. Acc. Chem. Res. 2007, 40 (11), 1174–1181.
    24.Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465.
    25.陳偉豪, 國立清華大學碩士論文. 一百零八學年度.
    26.Cotton, F. A.; Murillo, C. A.; Walton, R. A., Multiple Bonds Between Metal Atoms. 3rd Ed. Springer Science and Business Media. 2005, Chapter 9.
    27.Ghosh, A.; Mandoli, A.; Kumar, D. K.; Yadav, N. S.; Ghosh, T.; Jha, B.; Thomas, J. A.; Das, A., DNA binding and cleavage properties of a newly synthesised Ru(II)-polypyridyl complex. Dalton Trans. 2009, (42), 9312-9321.
    28.Barral, M. C.; González-Prieto, R.; Herrero, S.; Jiménez-Aparicio, R.; Priego, J. L.; Torres, M. R.; Urbanos, F. A., Anionic dihalotetraacetatodiruthenium (II,III) compounds. Polyhedron 2005, 24 (2), 239-247.
    29.Hagen, W. R., Biomolecular EPR Spectroscopy. 1st Ed. CRC Press. 2009, Chapter 5.
    30.Brackett, G. C.; Richards, P. L.; Caughey, W. S., Far‐Infrared Magnetic Resonance in Fe(III) and Mn(III) Porphyrins, Myoglobin, Hemoglobin, Ferrichrome A, and Fe(III) Dithiocarbamates. J. Chem. Phys. 1971, 54 (10), 4383–4401.
    31.吳柏漢, 國立清華大學博士論文. 一百零七學年度.

    QR CODE