簡易檢索 / 詳目顯示

研究生: 柏麥嘉
Bhattacharya, Shashwat
論文名稱: 於液態環境實現質量偵測之全差分 SOI-MEMS熱致動壓阻式環形振盪器
A Fully Differential SOI-MEMS Thermal Piezoresistive Ring Oscillator for Mass Sensing in Liquid Environment
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 方維倫
Fang, Wei-Leun
邱 一
Chiu, Yi
王玉麟
Wang, Yu-Lin
林致廷
Lin, Chih-Ting
盧向成
Lu, Shiang-cheng
陳文健
Chen, Wen-Chien
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 128
中文關鍵詞: MEMSMEMSSOI MEMS 製程熱壓阻共振器振盪器相位雜訊全差動式粘性阻尼質量感測器聚苯乙烯珠耦合式共振器模態局部化
外文關鍵詞: MEMS, MEMS, SOI MEMS process, thermal piezoresistive resonator, oscillator, phase noise, fully differential, viscous damping, mass sensor, polystyrene beads, coupled resonator, mode localization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用SOI晶片實現微機械振盪器,內容包含一個環形旋轉模態的共振器,該共振器採用全差動的設計,並使用熱致動壓阻感測的方式在水下環境中進行量測。此共振器的差動式設計使其達到了高達約64 dB 的饋通消除值,且此差動環形熱致動壓阻式共振器 (DR-TPR)的旋轉運動模態使其擁有能夠大幅度移除在液體環境中受到的粘性阻尼影響的特性。從量測結果得知,本研究所設計的共振器在去離子水中擁有高達537的品質因數值與8.5 dB的截止帶衰減量,另外本研究所設計的DR-TPR 品質因數在空氣和真空中分別擁有 3,893 和 5,741 的良好表現。在利用Zurich Instruments 的 HF2LI 鎖相放大器實現差動環形熱致動壓阻式振盪器 (DR-TPO)後,得到此振盪器在偏移頻率為1 kHz與10 kHz時的相位雜訊分別為 -77.6 dBc/Hz與-89.54 dBc/Hz。將此DR-TPO應用於質量感測能夠於液體環境中提供6.95 Hz 的艾倫偏差值,即能於液體環境中提供4.11 pg的質量解析度。而本文中亦展示了矽元件的鹽漬化,並使用羧化聚苯乙烯珠來改變共振器的頻率。透過此種技術,我們能夠用來識別在臨床和工業用途中具有廣泛應用的微小分子。DR-TPR表面上的羧化聚苯乙烯珠透過化學反應吸收小分子使得共振器產生相對應的負頻率漂移,並涵蓋了共振器表面上各種固定濃度的表徵。本研究展示了共振器在離子緩衝液體中的操作,這對其未來的應用性至關重要。DR-TPR 在磷酸鹽緩衝液 (PBS) 中的品質因數為 80。在本研究中,首次針對3-DOF的熱致動壓阻式 MEMS 耦合共振器的模態局部化的現象進行研究,並在大氣環境下達到令人滿意的品質因數值1,367。此外,與頻率漂移的單一對應共振器相比,利用耦合TPR元件的模態局部化改善了整體的靈敏度和共模抑制。且本研究發現,此種改善為所有模態局部化的耦合元件的通用特徵,因此本文能為更多未來在大氣條件下運行的不同的感測器設計開啟新的研究方向。


    This work presents a silicon-on-insulator (SOI) MEMS oscillator that comprises a ring-shaped rotational mode resonator incorporating a fully differential design for operation in the aquatic environment using the thermal drive piezoresistive sense transduction. The differential scheme used in the resonator design achieves a high feedthrough cancellation value close to 64 dB. The differential ring-shaped thermal piezoresistive resonator (DR-TPR) operating in the rotational mode exhibits the characteristic of minimizing the effect of viscous damping in a liquid environment. It depicts a quality factor value as high as 537 with the stop-band rejection of 8.5 dB. The closed-loop measurement utilizes the HF2LI Lock-in Amplifier from Zurich Instruments for Differential Ring-shaped Thermal Piezoresistive Oscillator (DR-TPO) implementation. It shows a phase noise of -77.6 dBc/Hz at 1-kHz offset and -89.54 dBc/Hz at the offset of 10-kHz. The DR-TPO usage for mass sensing in a liquid environment can provide a high mass resolution of 4.11 pg corresponding to the Allan Deviation value of 6.95 Hz. The quality factors of the DR-TPR go to high values of 3,893 and 5,741 in air and vacuum, respectively. This work also shows salinization of the silicon device and uses carboxyl-polystyrene beads to vary the frequency of the resonator. It can work as enabling technology to recognize tiny molecules having broad implementations in clinical and industrial purposes. The resonator has a negative frequency shift corresponding to the chemical absorption of the carboxyl-polystyrene beads on the DR-TPR surface. It covers the characterization in various concentrations of immobilization on the resonator surface. The work presents the operation of the resonator in an ionic buffer liquid which is vital for its future applicability. The Q value is 80 in phosphate-buffered saline (PBS) using DR-TPR. In this work, for the first time, the phenomenon of mode-localization has been studied for a 3-DOF thermal piezoresistive MEMS coupled-resonator system accomplishing a satisfactory quality factor value of 1,367 in ambient condition. The utilization of mode-localization in coupled TPR adds the inherent improvement of sensitivity and common-mode rejection compared to the frequency shift counterparts to unlock gateways for the cognizance of different sensors operating in ambient conditions.

    ABSTRACT i 摘要 iii ACKNOWLEDGEMENT v TABLE OF CONTENTS viii LIST OF FIGURES xii LIST OF TABLES xxi CHAPTER 1 INTRODUCTION 1 1.1 Motivation and Background 1 1.1.1 Need of High Q Resonators and Oscillators in Liquid Environment 2 1.1.2 Choice of Transduction Mechanism 3 1.2 Thermal Piezoresistive MEMS Transduction 4 1.3 Challenges of the Thermal Actuation 7 1.4 Thesis Overview 9 CHAPTER 2 ANALYSIS AND SIMULATION 11 2.1 Working of Thermally Actuated Piezoresistively Sensed Resonator 11 2.1.1 Design formulation of DR-TPR 12 2.2 DR-TPR Mathematical Modeling 14 2.3 Electrical Equivalent Modelling of DR-TPR 18 2.4 DR-TPR FEM Simulation 20 2.4.1 COMSOL Stationary Analysis 21 2.4.2 COMSOL Frequency Response 23 CHAPTER 3 SOI FABRICATION 28 3.1 Fabrication using Process Integration 28 3.1.1 Fabrication Results 29 3.1.2 Challenges in Process Integration 31 3.2 Fabrication using Self-Operation 33 3.2.1 Fabrication Flow 33 3.2.2 Intermediate Fabrication Results and Characterization 34 3.2.3 Layout 35 3.2.4 Zero Mark 35 3.2.5 Metallization 37 3.2.6 PECVD TEOS Deposition as Oxide Hard Mask 39 3.2.7 Deep Reactive Ion Etching (DRIE) 42 3.2.8 49% HF Release 43 3.2.9 10 µm SOI process 47 CHAPTER 4 RESONATOR AND OSCILLATOR CHARACTERIZATION 49 4.1 DR-TPR Measurement Results 49 4.1.1 Design of Feedthrough Cancellation 50 4.1.2 Air Measurements of the DR-TPR 52 4.1.3 Water Measurements of the DR-TPR 54 4.1.4 Vacuum Measurements of the DR-TPR 59 4.2 Verification of the DR-TPR mode shape using LDV 60 4.3 Temperature Profiling of the DR-TPR using IR 61 4.4 DR-TPO Measurement Results 61 4.4.1 Lock-In Amplifier 62 4.4.2 Phase Noise Response of DR-TPO 64 4.4.3 Allan Deviation of DR-TPO 67 4.4.4 Oscillator Performance Comparison of DR-TPO in Different Mediums 71 4.4.5 Comparison of DR-TPO with State of the Art 72 CHAPTER 5 CHEMICAL SENSING OF DR-TPR 74 5.1 Motivation of Chemical Sensing Application 74 5.2 Preparation of the DR-TPR for Chemical Sensing 76 5.3 Modifying the Surface of the DR-TPR 77 5.3.1 Reagents 77 5.3.2 Surface Cleaning and APTES Functionalization 78 5.3.3 The Carboxylic Polystyrene Beads Activation using EDC 79 5.3.4 Immobilization of the Activated Polystyrene Beads 80 5.4 Comparison of DR-TPR in Various Operating Mediums 82 5.5 The Luminous Intensity Estimation of the Recipe utilizing Carboxylic Polystyrene Beads 83 5.6 The Change in Frequency Induced by Various Concentrations of Polystyrene Beads 83 5.7 Sensitivity of DR-TPR 85 CHAPTER 6 TPR MASS SENSOR USING MODE LOCALIZATION 88 6.1 Motivation for using Mode Localization 88 6.1.1 Mode Localization 89 6.2 Design of the TPR Array 91 6.2.1 Scope of Improvements in the Single Degree of Freedom TPR Resonator 91 6.2.2 Double Resonator Couple Design 92 6.2.3 3-DOF Resonator Design and Simulation 96 6.3 Selection of Drive and Sense Path for Feedthrough Reduction Design of the TPR Array 100 6.4 3-DOF Resonator Equivalent Electrical Circuit 101 6.5 3-DOF Resonator Simulation for Mass Addition 102 6.6 Fabrication 104 6.7 3-DOF Resonator Electrical Characterization 105 6.7.1 2-DOF DR-TPR Electrical Response 105 6.7.2 Choice of Drive and Sense Resonator 106 6.7.3 Silver Nanodroplet Addition on DR-TPR 107 6.7.4 DC Tuning of the 3-DOF DR-TPR 110 CHAPTER 7 CONCLUSION AND FUTURE WORK 112 7.1 Conclusion 112 7.2 Current Challenges with Prospects 113 7.3 Future Work 115 7.3.1 10 µm DR-TPR Design 115 7.3.2 Non-Linearity Exploration in DR-TPR 116 7.3.3 Signal To Noise Enhancements using DR-TPR 116 7.3.4 Exploration Of Piezoelectric Transduction for Liquid Operation 119 7.3.5 Mode Localized TPR Designs using CMOS-MEMS 119 7.3.6 Parylene based sensors and chemical sensors 120 BIBLIOGRAPHY 121

    [1] T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature, vol. 446, pp. 1066-1069, Apr. 2007.
    [2] J. S. Daniels and N. Pourmand, “Label-Free Impedance Biosensors: Opportunities and Challenges,” Electroanalysis, vol.19, no.12, pp. 1239-1257, May 2007.
    [3] L. A. Su, W. Z. Jia, C. J. Hou, and Y. Lei, “Microbial biosensors: A review,” Biosensors & Bioelectronics, vol. 26, no. 5, pp. 1788-1799, Jan. 2011.
    [4] I. D. Avramov, “A 0-phase circuit for QCM-based measurements in highly viscous liquid environments,” IEEE Sensors Journal, vol. 5, no. 3, pp. 425-432, June 2005.
    [5] K. Länge, B. E. Rapp, and M. Rapp, “Surface acoustic wave biosensors: a review,” Anal.Bioanal. Chem., vol. 391, no. 5, pp. 1509-1519, Jul. 2008.
    [6] W. Xu, S. Choi, and J. Chae, “A contour-mode film bulk acoustic resonator of high quality factor in a liquid environment for biosensing applications,” Applied Physics Letters, vol. 96, no.5, pp. 053703, Feb. 2010.
    [7] E. Mehdizadeh, J. C. Chapin, J. M. Gonzales, A. Rahafrooz, R. Abdolvand, B. W. Purse & S. Pourkamali, “Microelectromechanical disk resonators for direct detection of liquid-phase analytes” Sensors and Actuators A: Physical, vol. 216, pp. 136-141, Jun. 2014.
    [8] A. Rahafrooz and S. Pourkamali, “High-frequency thermally actuated elec-tromechanical resonators with piezoresistive readout,” IEEE Transactions on Electron Devices, vol. 58, no. 4, pp. 1205-1214, Apr. 2011.
    [9] A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Sub-100ppb/ºC temperature stability in thermally actuated high frequency silicon resonators via degenerate phosphorous doping and bias current optimization,” Technical Digest, 2010 IEEE International Electron Devices Meeting, (IEDM’10), San Francisco, CA, Dec. 6-8, 2010, pp. 170-173.
    [10] J. H. Seo and O. Brand, “High Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment,” Journal of Microelectromechani-cal Systems, vol. 17, no. 2, pp. 483-493, Apr. 2008.
    [11] A. Rahafrooz and S. Pourkamali, “Rotational mode disk resonators for high-Q operation in liquid,” Proceedings, 2010 IEEE Sensors, Waikoloa, HI, Nov. 1-4, 2010, pp. 1071-1074.
    [12] M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, “Super-high-frequency two-port AlN contour-mode resonators for RF applications”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 1, pp. 38-45, Jan. 2010.
    [13] W. Beneche and W. Riethmuller, “Application of Silicon-Microactuators based on Bimorph Structures,” Proceedings, 1989 IEEE International Confer¬ence on Micro Electro Mechanical Systems (MEMS), Salt Lake City, UT, 20-22, Feb. 1989, pp. 116-120.
    [14] T. S. J. Lammerink, M. Elwenspoek, and J. H. J. Fluitman, “Optical excitation of micro-mechanical resonators,” Proceedings, 1991 IEEE International Con¬ference on Micro Electro Mechanical Systems (MEMS), 30-2 Jan, 1991, pp. 160-165.
    [15] R. B. Reichenbach, M. K. Zalalutdinov, K. L. Aubin, D. A. Zaplewski, B. Ilic, B. H. Houston, H. G. Craighead, and J. M. Parpia, “Resistively actuated micromechanical dome resonators,” Proceedings, 2004 Micromachining and Microfabrication, San Jose, California, United States, 24 Jan 2004, vol. 5344, pp. 51-58.
    [16] C.-S. Li, M.-H. Li, C.-C. Chen, C.-H. Chin, and S.-S. Li, “A low voltage CMOS-MicroElectroMechanical Systems thermal-piezoresistive resonator with Q > 10,000,” IEEE Electron Device Letters (EDL), vol. 36, no. 2, pp. 192-194, Feb. 2015.
    [17] A. Rahafrooz and S. Pourkamali,” Fabrication and characterization of thermally actuated micromechanical resonators for airborne particle mass sensing: I. Resonator design and modeling”, Journal of Micromechanics and Microengineering, vol. 20, no. 12, pp. 125018, Nov. 2015.
    [18] A. Rahafrooz and S. Pourkamali, "Characterization of rotational mode disk resonator quality factors in liquid," Proceedings, 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) San Fransisco, CA, 2-5 May, 2011, pp. 1-5.
    [19] P. G. Steeneken, K. L. Phan, M. J. Goossens, G. E. J. Koops, G. J. A. M. Brom, C. van der Avoort, and J. T. M. van Beek, “Piezoresistive heat engine and refrigerator,” Nature Physics, vol. 7, no. 4, pp. 354-359, Jan. 2011.
    [20] A. Rahafrooz and S. Pourkamali, “Fully micromechanical piezo-thermal oscillators,” Technical Digest, 2010 IEEE Tech. Dig. International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 6-8 Dec., 2010, pp. 158-161.
    [21] C.-C. Chen, H.-T. Yu, and S.-S. Li, “A balanced measurement and characterization technique for thermal-piezoresistive micromechanical resonators,” Proceedings, 2012 IEEE International Conference on Micro Electro Mechanical Systems, Paris, France, 29 Jan.–2 Feb., 2012, pp. 377-380.
    [22] C.-C. Chen, M.-H. Li, W.-C. Chen, H.-T. Yu, and S.-S. Li, “Thermally-actuated and piezoresistively-sensed CMOS-MEMS resonator array using differential-mode operation,” Proceedings, 2012 IEEE International Frequency Control Symposium Proceedings, Baltimore, Maryland, 21-24 May, 2012, pp. 1-4.
    [23] A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Input-output insulation in thermal-piezoresisitive resonant microsctructures using embedded oxide beams," Proceedings, 2012 IEEE International Frequency Control Symposium Proceedings, Baltimore, Maryland, 21-24 May, 2012, pp. 1-4.
    [24] C. C. Chu, S. Dey, T. Y. Liu, C. C. Chen, and S.-S. Li, “Thermal-Piezoresistive SOI-MEMS Oscillators Based on a Fully Differential Mechanically Coupled Resonator Array for Mass Sensing Applications," Journal of Microelectrome¬chanical Systems, vol. 27, no. 1, pp. 59-72, Feb. 2018.
    [25] Zurich Instruments HF2LI. http:// http://www.zhinst.com/products/hf2li
    [26] J. Lee, W. Shen, K. Payer, T. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Letters, vol. 10, no. 7, pp. 2537-42, Jul. 2010.
    [27] J. E.-Y. Lee and A. A. Seshia, “Parasitic feedthrough cancellation techniques for enhanced electrical characterization of electrostatic microresonators,” Sensors and Actuators A: Physical, vol. 156, no. 1, pp. 36-42, Nov. 2009.
    [28] J. J. Gooding, “Biosensor technology for detecting biological warfare agents: Recent progress and future trends,” Analytica Chimica Acta, vol. 559, no. 2, pp. 137-151, Feb. 2006.
    [29] E. Riekeberg and R. Powers, “New frontiers in metabolomics: from measurement to insight,” F1000Research, vol. 6, no. 1, pp. 1148-1148, Jul. 2017.
    [30] D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sensors and Actuators B: Chemical, vol. 121, no. 1, pp. 158-177, Jan. 2007.
    [31] V. Qaradaghi, A. Ramezany, S. Babu, J. B. Lee, and S. Pourkamali, “Nanoelectromechanical Disk Resonators as Highly Sensitive Mass Sensors,” IEEE Electron Device Letters, vol. 39, no. 11, pp. 1744-1747, Sept. 2018.
    [32] W. Pang, H. Zhao, E. S. Kim, H. Zhang, H. Yu, and X. Hu, “Piezoelectric microelectromechanical resonant sensors for chemical and biological detection,” Lab on a Chip, vol. 12, no. 1, pp. 29-44, Nov. 2011.
    [33] A. Guha, O. S. Ahmad, A. Guerreiro, K. Karim, N. Sandström, V. P. Ostanin, W. van der Wijngaart, S. A. Piletsky, and S. K. Ghosh, “Direct detection of small molecules using a nano-molecular imprinted polymer receptor and a quartz crystal resonator driven at a fixed frequency and amplitude,” Biosensors and Bioelectronics, vol. 158, article 112176, Jun. 2020.
    [34] X. Jiang, R. Wang, Y. Wang, X. Su, Y. Ying, J. Wang, and Y. Li, “Evaluation of different micro/nanobeads used as amplifiers in QCM immunosensor for more sensitive detection of E. coli O157:H7,” Biosensors and Bioelectronics, vol. 29, no. 1, pp. 23-28, Nov. 2011.
    [35] Q. Yang, S. Pan, Y. Zhao, H. Zhang, W. Pang, and X. Duan, “Biomolecular stiffness detection based on positive frequency shift of CMOS compatible gigahertz solidly mounted resonators,” Biosensors and Bioelectronics, vol. 96, no.1, pp. 206-212, Oct. 2017.
    [36] J. Alonso and W. J. L. s. Goldmann, “Feeling the forces: atomic force microscopy in cell biology,” Life Sciences, vol. 72, no. 23, pp. 2553-60, Apr. 2003.
    [37] F. Gerbal, V. Laurent, A. Ott, M. F. Carlier, P. Chaikin, and J. Prost, “Measurement of the elasticity of the actin tail of Listeria monocytogenes,” European Biophysics Journal, vol. 29, no. 2, pp. 134-40, May 2000.
    [38] A. Ramezany and S. Pourkamali, “Ultrahigh Frequency Nanomechanical Piezoresistive Amplifiers for Direct Channel-Selective Receiver Front-Ends,” Nano Letters, vol. 18, no. 4, pp. 2551-2556, Apr. 2018.
    [39] A. A. Zope, J. Chang, T. Liu, and S.-S. Li, “A CMOS-MEMS Thermal-Piezoresistive Oscillator for Mass Sensing Applications,” IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 1183-1191, Feb. 2020.
    [40] G. Pillai, A. A. Zope, and S.-S. Li, “Piezoelectric-Based Support Transducer Design to Enable High-Performance Bulk Mode Resonators,” Journal of Microelectromechanical Systems, vol. 28, no. 1, pp. 4-13, Feb. 2019.
    [41] M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, “Super-high-frequency two-port AlN contour-mode resonators for RF applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 1, pp. 38-45, 2010.
    [42] J. Segovia-Fernandez, M. Cremonesi, C. Cassella, A. Frangi, and G. Piazza, “Anchor Losses in AlN Contour Mode Resonators,” Journal of Microelectromechanical Systems, vol. 24, no. 2, pp. 265-275, Apr. 2015.
    [43] T. L. Naing, T. O. Rocheleau, Z. Ren, S. Li, and C. T. Nguyen, “High- Q UHF Spoke-Supported Ring Resonators,” Journal of Microelectromechanical Systems, vol. 25, no. 1, pp. 11-29, Feb. 2016.
    [44] C. T. Nguyen, “MEMS-based RF channel selection for true software-defined cognitive radio and low-power sensor communications,” IEEE Communica¬tions Magazine, vol. 51, no. 4, pp. 110-119, Apr. 2013.
    [45] A. A. Zope and S.-S. Li, “Balanced Drive and Sense CMOS Thermal Piezoresistive Resonators and Oscillators,” IEEE Electron Device Letters, vol. 42, no. 2, pp. 232-235, Feb. 2021.
    [46] G. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Zeitschrift für Physik, vol. 155, no. 2, pp. 206-222, Apr. 1959.
    [47] G. L. Dybwad, “A sensitive new method for the determination of adhesive bonding between a particle and a substrate,” Journal of Applied Physics, vol. 58, no. 7, pp. 2789-2790, May 1985.
    [48] S. Bhattacharya and S.-S. Li, “A Fully Differential SOI-MEMS Thermal Piezoresistive Ring Oscillator in Liquid Environment Intended for Mass Sensing,” IEEE Sensors Journal, vol. 19, no. 17, pp. 7261-7268, Sept. 2019.
    [49] K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing-Part II,” Journal of Microelectromechanical Systems, vol. 12, no. 6, pp. 761-778, Dec. 2003.
    [50] Z. Grabarek and J. Gergely, “Zero-length crosslinking procedure with the use of active esters,” Analytical Biochemistry, vol. 185, no. 1, pp. 131-135, Feb. 1990.
    [51] T. Y. Kwon, K. Eom, J. H. Park, D. S. Yoon, T. S. Kim, and H. L. Lee, “In situ real-time monitoring of biomolecular interactions based on resonating microcantilevers immersed in a viscous fluid,” Applied Physics Letters, vol. 90, no. 22, pp. 1-3, Jun. 2007.
    [52] H. H. Nguyen, J. Park, S. Kang, and M. Kim, “Surface plasmon resonance: a versatile technique for biosensor applications,” Sensors (Basel), vol. 15, no. 5, pp. 10484-10510, May 2015.
    [53] J. Choi, C. H Ahn, S. Bhansali, and H.T. Henderson, “A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems,” Sensors and Actuators B: Chemical, vol. 68, no. 1, pp. 34-39, Aug. 2000.
    [54] W.O. Nyang'au, A. Setiono, M. Bertke, H. Bosse, and E. Peiner, “Cantilever-droplet-based sensing of magnetic particle concentrations in liquids,” Sensors (Basel), vol. 20, no. 3, pp. 1-18, Nov. 2019.
    [55] S. Bhattacharya, N.-Y. Teng, J. Satija, C.-T. Lin, and S.-S. Li, “Detection of polystyrene beads concentration using an SOI-MEMS differential rotational thermal piezoresistive resonator for future label-free biosensing applications,” IEEE Sensors Journal, Early Access, Aug. 2021.
    [56] S. Bhattacharya, J. Satija, S. Trivedi and S.-S. Li, “A novel thermal piezoresistive coupled resonator implementing mode localization for mass sensing,” Proceedings, IEEE Sensors 2020 Virtual Conference, Rotterdam, Netherlands October 25-28, 2020, pp. 1-4.
    [57] C. T.-C. Nguyen, “MEMS technology for timing and frequency control,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 2, pp. 251-270, Feb. 2007.
    [58] G. Piazza, P. J. Stephanou, and A. P. Pisano, “Single-chip multiple-frequency AlN MEMS filters based on contour-mode piezoelectric resonators,” Journal of Microelectromechanical Systems, vol. 16, no. 2, pp. 319-328, Apr. 2007.
    [59] I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange anisotropy,” Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, pp. 271-350, 1963.
    [60] T.-Y. Liu, C.-A. Sung, C.-H. Weng, C.-C. Chu, A. A. Zope, G. Pillai, and S.-S. Li, “Gated CMOS-MEMS thermal-piezoresistive oscillator-based PM2.5 sensor with enhanced particle collection efficiency,” Proceedings, 31st IEEE Int. Micro Electromechanical Systems Conf. (MEMS’18), Belfast, Northern Ireland, Jan. 21-25, 2018, pp. 75-78.
    [61] B. E. DeMartini, J. F. Rhoads, M. A. Zielke, K. G. Owen, S. W. Shaw, and K. L. Turner, “A single input-single output coupled microresonator array for the detection and identification of multiple analytes,” Applied Physics Letters, vol. 93, no. 5, pp. 1-3, Aug. 2008.
    [62] P. W. Anderson, “Absence of diffusion in certain random lattices,” American Physical Society, vol. 109, no. 5, pp. 7261-7268, Mar. 1958.
    [63] C. Zhao, M. H. Montaseri, G. S. Wood, S. H. Pu, A. A. Seshia, and M. Kraft, “A review on coupled MEMS resonators for sensing applications utilizing mode localization,” Sensors and Actuators A: Physical, vol. 249, pp. 93-111, Oct. 2016.
    [64] F. D. Bannon, J. R. Clark, and C. T.-.C Nguyen, “High-Q HF microelectro-mechanical filters,” IEEE Journal of Solid-State Circuits, vol. 35, no. 4, pp. 512-526, Apr. 2000.
    [65] M. M. Shalaby, M. A. Abdelmoneum, and K. Saitou, “Design of spring coupling for high-Q high-frequency MEMS filters for wireless applications,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1022-1030, Apr. 2009.
    [66] M. Chellasivalingam, M. Pandit, M. Kalberer, and A. A. Seshia, “Ultra-fine Particulate Detection using Mode-localized MEMS Resonators,” Proceedings, 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), Orlando, FL, USA, Apr. 14-18, 2019, pp. 1-5.
    [67] P. Thiruvenkatanathan, J. Woodhouse, J. Yan, and A. A. Seshia, “Manipulat-ing Vibration Energy Confinement in Electrically Coupled Microelectrome-chanical Resonator Arrays,” Journal of Microelectromechanical Systems, vol. 20, no. 1, pp. 157-164, Feb. 2011.
    [68] M.A. Schmidt and R.T. Howe, “Silicon Resonant Microsensors,” Proceedings, 14th Automotive Materials Conference: Ceramic Engineering and Science, W. Smothers (Ed.), pp. 1019-1034, Jan. 1987.
    [69] C. Pierre, “Mode localization and eigenvalue loci veering phenomena in disordered structures,” Journal of Sound and Vibration, vol. 126, no. 3, pp. 485-502, May. 1988.
    [70] C. T.-C. Nguyen, “Frequency-selective MEMS for miniaturized low-power communication devices,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no.8, pp. 1486-1503, Aug. 1999.
    [71] C. Zhao, G. S. Wood, J. Xie, H. Chang, S. H. Pu, and M. Kraft, “A Three Degree-of-Freedom Weakly Coupled Resonator Sensor with Enhanced Stiffness Sensitivity,” Journal of Microelectromechanical Systems, vol. 25, no. 1, pp. 38-51, Feb. 2016.
    [72] Z. Xiong, Z. Zhang, L. Zhang, and H. Yang, “Eliminate the transmission feedthrough of thermal-piezoresistive I2 -BAR MEMS resonators based on reverse-biased PN junction,” Micro & Nano Letters, vol. 13, no. 9, pp. 1232-1235, Feb. 2018.

    QR CODE