研究生: |
盧廷瑜 Lu, Ting-Yu |
---|---|
論文名稱: |
開發應答性奈米複合療法傳輸系統於癌症治療之應用 Development of functionized nanoparticle delivery of multiple modality therapies for cancer treatments |
指導教授: |
邱信程
Chiu, Hsin-Cheng |
口試委員: |
王先知
駱俊良 許源宏 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 181 |
中文關鍵詞: | 藥物傳輸系統 、酸鹼應答 、氧化應答 |
外文關鍵詞: | Drug delivery system, pH responsive, ROS responsive |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為開發具增加腫瘤組織累積能力具有雙標靶之固態脂質奈米粒子 (Solid lipid nanoparticles, SLNs),可於腫瘤微環境中轉換奈米載體表面電性與藉由磁導引來增加藥物於腫瘤內累積;同時結合化療藥物Doxorubicin(DOX)及奈米氧化鐵粒子(SPIONs)的熱療效果能有效抑制腫瘤生長。
首先利用二次乳化法製備搭載DOX/SPIONs的固態脂質奈米粒子,並於過程中嵌插具腫瘤微環境應答特性之雙性分子(Histamine derivative dodecanol, HDD) 於奈米粒子表面能賦予SLNs 腫瘤環境辨別能力,並強化載藥SLNs 滯留於腫瘤組織間之效果此外,藉由控制HDD 之導入數量可調控SLNs 之等電點,使載體能於pH 值6~7 環境中進行電性變化。當表面電性轉為正電時,會因正負電相吸引而易於吸附在癌症細胞膜上增強載體進入細胞之效率,強化化療效果。包覆油酸氧化鐵之SLNs 具有磁導引及磁生熱之特性,藉由高頻交流磁場的施予產生磁熱效應可達到熱殺癌細胞的功效。
此載藥奈米微粒直徑約114 nm, DOX 及 SPIONs 含量分別為10.94 %與1.6 %。帶有 HDD 之奈米載體於表面電性量測上成功證實其於微酸環境中之電性轉化能力,於細胞吞噬實驗中亦證實具有電性轉換能力之奈米載體相較於控制組於微酸環境中被癌細胞攝取數量有顯著提升。此外藉由磁導引可使奈米載體大量累積於腫瘤區,大幅提升癌細胞內藥物濃度。
於動物腫瘤抑制實驗結果亦可證實經給予腫瘤雙標靶奈米載體確實能有效累積於腫瘤處,並給予化學/熱雙重治療能有效抑制腫瘤生長。綜觀以上成果,本研究開發出具雙標靶特性之固態脂質奈米傳輸系統並同時具有化學/磁熱雙重療法並成功驗證其抑制腫瘤之功效。
本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 本研究旨在開發能藉由近紅外光雷射 (NIR)照射光敏藥物靛氰綠 照射光敏藥物靛氰綠 照射光敏藥物靛氰綠 照射光敏藥物靛氰綠 照射光敏藥物靛氰綠 照射光敏藥物靛氰綠 照射光敏藥物靛氰綠 照射光敏藥物靛氰綠 照射光敏藥物靛氰綠 (Indocyanine green, ICG)後大量產生活性氧自由基 後大量產生活性氧自由基 後大量產生活性氧自由基 後大量產生活性氧自由基 後大量產生活性氧自由基 後大量產生活性氧自由基 後大量產生活性氧自由基 後大量產生活性氧自由基 (reactive oxygen species, ROS)進行應答以釋放化療 /輻射增敏藥物之智慧型奈米載體系統,同時產生局部 升溫以進行光熱治療,並搭配放射有效抑制腫瘤生長與復發。
本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 本研究成功開發出對活性氧物質具應答能力之高分子 poly(thiodiethylene malonate) (PSDEM)與其三團聯高分子 與其三團聯高分子 PEG-PSDEM-PEG,並利用此高分 子材料 製備出搭載化療 /輻射增敏藥物 Vorinostat (suberoylanilide hydroxamic acid, SAHA)
與光敏藥物靛氰綠 (Indocyanine green, ICG)。此高分子透過 。此高分子透過 thiodiethylene glycol 內硫醚 (sulfides)在高氧化力環境中會被為亞碸( 在高氧化力環境中會被為亞碸( 在高氧化力環境中會被為亞碸( 在高氧化力環境中會被為亞碸( 在高氧化力環境中會被為亞碸( 在高氧化力環境中會被為亞碸( 在高氧化力環境中會被為亞碸( 在高氧化力環境中會被為亞碸( sulfoxide)的特性,賦 )的特性,賦 )的特性,賦 予其疏水 /親水性間轉換能力。一旦構築奈米粒子之高分被氧化變成特 性時,即會導致奈米粒子瓦解並釋放出所搭載之藥物。此徑大小約為 性時,即會導致奈米粒子瓦解並釋放出所搭載之藥物。此徑大小約為 性時,即會導致奈米粒子瓦解並釋放出所搭載之藥物。此徑大小約為 性時,即會導致奈米粒子瓦解並釋放出所搭載之藥物。此徑大小約為 性時,即會導致奈米粒子瓦解並釋放出所搭載之藥物。此徑大小約為 126 nm,並具有 良好藥物搭載效率 (ICG : 9.1 wt%, SAHA : 4.5 wt% )。藉由近紅外 。藉由近紅外 光雷射照產生 ROS之氧化應答能力評估顯示,經過後的奈米粒子形態會 產生瓦解現象,且藥物累積釋放量經氧化後亦會明顯提升。細胞實驗中證藉由 產生瓦解現象,且藥物累積釋放量經氧化後亦會明顯提升。細胞實驗中證藉由 產生瓦解現象,且藥物累積釋放量經氧化後亦會明顯提升。細胞實驗中證藉由 產生瓦解現象,且藥物累積釋放量經氧化後亦會明顯提升。細胞實驗中證藉由 產生瓦解現象,且藥物累積釋放量經氧化後亦會明顯提升。細胞實驗中證藉由 NIR照射所產生的 ROS破壞而釋放出藥物與產生光熱治療,並搭配射能 導致 4T1癌細胞 DNA嚴重損傷而使細胞凋亡。在腫瘤抑制實驗中,當給予具應 嚴重損傷而使細胞凋亡。在腫瘤抑制實驗中,當給予具應 嚴重損傷而使細胞凋亡。在腫瘤抑制實驗中,當給予具應 嚴重損傷而使細胞凋亡。在腫瘤抑制實驗中,當給予具應 嚴重損傷而使細胞凋亡。在腫瘤抑制實驗中,當給予具應 答性奈米粒子并照射 NIR與搭配放射治療後確實有最佳抑制效果,證明載體可 與搭配放射治療後確實有最佳抑制效果,證明載體可 受 NIR照射觸發輻增敏藥物釋放強化治療效果與產生光熱,搭配上 照射觸發輻增敏藥物釋放強化治療效果與產生光熱,搭配上 放射 治療可成功抑制腫瘤生長並減少復發情形。綜觀上述果,本研究開之搭載 治療可成功抑制腫瘤生長並減少復發情形。綜觀上述果,本研究開之搭載 治療可成功抑制腫瘤生長並減少復發情形。綜觀上述果,本研究開之搭載 治療可成功抑制腫瘤生長並減少復發情形。綜觀上述果,本研究開之搭載 治療可成功抑制腫瘤生長並減少復發情形。綜觀上述果,本研究開之搭載 ICG/SAHA之氧化應答奈米粒子,具有提升現今放 射治療功效利用光熱與之氧化應答奈米粒子,具有提升現今放 射治療功效利用光熱與之氧化應答奈米粒子,具有提升現今放 射治療功效利用光熱與之氧化應答奈米粒子,具有提升現今放 射治療功效利用光熱與之氧化應答奈米粒子,具有提升現今放 射治療功效利用光熱與之氧化應答奈米粒子,具有提升現今放 射治療功效利用光熱與射
In this study, a versatile chemodrug/magnetite delivery system based on solid lipid nanoparticles (SLNs) has been developed to enhance cancer therapeutic efficacy via surface charge conversion and magnetic guidance. To endow the SLNs with pH-inducible surface charge conversion, a pH-responsive lipid derivative (HDD) was first synthesized via the covalent conjugation between histamine and 1-dodecanal. In addition, the cationic anticancer drug, doxorubicin (DOX), was complexed with the anionic lipids through electrostatic interaction to facilitate the encapsulation of DOX within the hydrophobic core of SLNs.
The drug/magnetite-loaded SLNs (DSLNs) modified with HDD on the surface (DSLNs-H) are 115 nm in diameter. In acidic tumor microenviroment (pH 6.6 ~ 6.0), the surface charge conversion (-7 to +5 mv) of the DSLNs-H was observed due to the extensive protonation of histamine groups. The DOX can be released by the disruption of nanocarriers in lysosomes by lipolytic enzymes.
In vitro and In vivo data demonstrates that the cellular uptake of DSLNs-H by cancer cells was obviously enhanced through electrostatic association between positively charged HDD and negatively charged cell membrane in culture medium at acidic environment under magnetic guidance. Owing to the pronounced cellular uptake, the DSLNs-H show the superior chemotherapy and hyperthermia effect against cancer cells under alternative magnetic field treatment, which also demonstrates great potential of thermos/chemo combination therapy in cancer treatment.
This work aims to develop a novel nanoparticle delivery system capable of liberating therapeutic paylods in response to the dramatic increase of the external reactive oxygen species (ROS) level upon Near-infrared and radiation therapy for improving the overall anti-cancer efficacy. Herein, the ROS-responsive poly(thiodiethylene malonate) (PSDEM) have been successfully prepared by stepwise polymerization approach and employed as the major materials in developing the novel nanotherapeutics. Through the ROS-mediated oxidation reaction, the non polar sulfide groups on the main chains of polyesters are chemically converted to the polar sulfoxide group, thus resulting in the hydrophobic-hydrophilic transition of the ROS-sensitive polymers. This inevitably leads to the structural disruption of nanotherapeutics comprising mainly the ROS-sensitive polyester upon the irradiation and thus activates drug liberation for chemotherapy in combination with the NIR and radiation against breast cancer. The nanotherapeutics with a particle size of ca 126 nm in diameter demonstrate an excellent radiosensitizer comfinement of HDAC inhibitor, SAHA. In vitro cytotoxic analysis data demonstrates that the viability of 4T1 cells co-incubated with NIR pretreated nanoparticles was reduced proportionally with the increase of the SAHA dose, while that of cancer cells incubated with the nanoparticles in the absence of ROS activation remained relatively high, indicating the strong dependence of drug release from the smart nanoparticles on the production of ROS. Importantly, in vivo tumor growth inhibition study strongly illustrates that the incorporation of photothermal therapy and radiation therapy with the smart nanoparticles exhibit potent antitumor efficacy . Based on the above results, this study provides a promising strategy for the development of ROS responsive drug delivery nanotherapeutics for tumor therapy.
Douglas Hanahan and Robert A. Weinberg, The hallmarks of cancer. Cell, 2000, 100, 57-70
2. Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013. 19(11): p. 1423-1437
3. Tredan, O., et al., Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst, 2007. 99(19): p. 1441-1454.
4. Maeda ,H ., et al., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release, 2000. 65(1-2): p. 271-284.
5. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2007. 2(12): p. 751-760.
6. Stockhofe, K., et al., Radiolabeling of Nanoparticles and Polymers for PET Imaging. Pharmaceuticals (Basel), 2014. 7(4): p. 392-418.
7. Danhier, F., O. Feron, and V. Preat, To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release, 2010. 148(2): p. 135-146.
8. Kobayashi, H., R. Watanabe, and P.L. Choyke, Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2013. 4(1): p. 81-89.F
9. Chunbai He,Yiping Hu, Lichen Yin, Cui Tang, ChunhuaYin, Effect of particles size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles, Biomaterials.2010.01.065
10. Danhier, F., O. Feron, and V. Preat, To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release, 2010. 148(2): p. 135-146.
75
11. Erickson, J.W. and R.A. Cerione, Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget, 2010. 1(8): p. 734-740
12. Hisataka Kobayashi , Rira Watanabe, Peter L. Choyke Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013.4(1):. 81-89
13. Jon W. Erickson and Richard A. Cerione, Glutaminase: A Hot Spot For Regulation Of Cancer Cell Metabolism? Oncotarget. 2010 Dec;1(8):734-740
14. Brahimi-Horn,M.C and J.Pouyssegur, Oxygen, a source of life and stress.FEBS let, 2007.581(19):p.3582-3591
15. Luke David R.,Kasiske Bertram L.,Matzke GaryR.,Awni Walid M.,Keane William F.,Effects of Cyclosporine on the Isolated perfused Rat-Kidney. Transplantation, 1987, 43, 795-799
16. Jain,R.K.,Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Review, 2012,64,353-365.
17. S. Mukherjee, S. Ray, and R. S. Thakur, Solid Lipid nanoparticles: A modern Formulation Approach in Drug Delivery System, Indian J Pharm Sci. 2009 Jul-Aug;71(4):349-358
18. Zhang,Z.,S.Tan, and S.S.Feng, Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials, 2012. 33(19):p.4889-906
19. Szakacs, G., er al., Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 2006.5(3):p.219-234
20. Collnot, E.M.,et al., Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity. Mol Pharm, 2007. 4 (3): p. 465-474
21. Collnot, E.M., et al., Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time
76
and site of access, Mol Pharm, 2010. 7(3):p. 642-651
22. Mi,Y.,Y. Liu, and S.S.feng, Formulation of Docetaxel by folic acid-conjugated d-alpha-tocopheryl polyethylene glycol succinate 2000(Vitamin E TPGS(2k)) micelles for targeted and synergistic chemotherapy. Biomaterials, 2011.32(16):p. 4058-4066
23. Muthu, M.S., et al., Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials, 2012. 33(12):p. 3494-3501
24. Guo, Y., et al., The application of Vitamin E TPGS in drug delivery. Eur J Pharm Sci, 2013. 49(2):p. 175-186
25. Zeng,X.,et al., Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials, 2013. 34(25):p. 6058-6067
26. Benjaminsen, R.V., er al., The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther, 2013. 21(1):p. 149-157
27. Lee, E.S., et al., Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release, 2003. 90(3): p. 363-374.
28. Benjaminsen, R.V., et al., The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther, 2013. 21(1): p. 149-157.
29. Qiu, L., et al., Self-assembled pH-responsive hyaluronic acid-g-poly((L)-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater, 2014. 10(5): p. 2024-2035.
30. Pang, X., et al., pH-responsive polymer-drug conjugates: Design and progress. J Control Release, 2016. 222: p. 116-129.
77
31. Zhao, Y., et al., Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J Control Release, 2016. 222: p. 56-66.
32. Li, S., et al., pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery. Nanoscale, 2014. 6(22): p. 13701-13709.
33. Edgcomb, S.P. and K.P. Murphy, Variability in the pKa of histidine side-chains correlates with burial within proteins. Proteins, 2002. 49(1): p. 1-6.
34. He, C., et al., Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010. 31(13): p. 3657-3666.
35. Caroline F.Thorn, Connie Oshiro, Sharon Marsh, Tina Hernandez-Boussard, Howard Mcleod, Teri E.Klein, and Russ B. Altman. Doxorubicin pathways:pharmacodynaamices and adverse effects. Pharmacogenet Genomics, 2011, 21, 440-446
36. Subramanya Srikantan, Kotb Abdelmohsen, Eun Kyung Lee, et al., Translational Control of TOP2A Influences Doxorubicin Efficacy. Molecular and cellular biology, 2011, 31, 3790-3801.
37. Shveta Mahajan, Veena Koul, Veena Choudhary, Gauri Shishodia and Alok C Bharti, Preparation and in vitro evaluation of folate-receptor-targeted SPION–polymer micelle hybrids for MRI contrast enhancement in cancer imaging. Nanotechnology, 2013, 24, 015603.
38. Eun-Kyung Li , Yong-Min Huh, Jaemoon Yang, Kwangyeol Lee, Jin-Suck Suh and Seungjoo Haam, pH-Triggered Drug-Releasing Magnetic Nanoparticles for Cancer Therapy Guided by Molecular Imaging by MRI. Advanced Materials, 2011, 23, 2436–2442.
39. Jaeyun Kim, Ji Eun Lee, Soo Hyeon Lee, Jung Ho Yu, Jung Hee Lee, Tae Gwan Park, and Taeghwan Hyeon, Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer-Targeted Imaging and Magnetically Guided Drug Delivery, Advanced Materials, 2008, 20, 478-483.
40. Jon Dobson, Magnetic Nanoparticles for Drug Delivery. Drug development research, 2006, 67, 55-60.
78
41. A Pankhurst, J Connolly, S K Jones and J Dobson, Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 2003, 36, 167-181.
42. Ronghui Wang, Yang Zhou1, Ping Zhang, Yu Chen, Wei Gao, Jinshun Xu, Hangrong Chen, Xiaojun Cai, Kun Zhang, Pan Li, Zhigang Wang, Bing Hu, Tao Ying, Yuanyi Zheng, Phase-transitional Fe3O4/perfluorohexane Microspheres for Magnetic Droplet Vaporization. Theranostics, 2017, 7, 846-854.
43. Ana Espinosa, Riccardo Di Corato, Jelena Kolosnjaj-Tabi, Patrice Flaud, Teresa Pellegrino and Claire Wilhelm, Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano, 2016, 10, 2436−2446.
44. Eugenio Bringas, Ӧzcan Kӧysüren, Dat V. Quach, Morteza Mahmoudi, Elena Aznar, John D. Roehling, M. Dolores Marcos, Ramón Martúnez-Máñez and Pieter Stroeve, Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chem. Commun., 2012, 48, 5647–5649.
45. Agostina Grillone , Eugenio Redolfi Riva , Alessio Mondini , et al., Active Targeting of Sorafenib: Preparation, Characterization, and In Vitro Testing of Drug-Loaded Magnetic Solid Lipid Nanoparticles. Advanced Healthcare Materials, 2015, 4, 1681-1690.
Douglas Hanahan and Robert A. Weinberg, The hallmarks of cancer. Cell, 2000, 100, 57-70
2. https://www.cancer.org/cancer/breast-cancer.html 3. Ragaz J, Jackson SM, Le N, Plenderleith IH, Spinelli JJ, Basco VE, Wilson KS, Knowling MA, Coppin CM, Paradis M, Coldman AJ, Olivotto IA., Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer., N Engl J Med. 1997 Oct 2;337(14):956-62. 4. Overgaard M, Hansen PS, Overgaard J, Rose C, Andersson M, Bach F, Kjaer M, Gadeberg CC, Mouridsen HT, Jensen MB, Zedeler K, Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N Engl J Med. 1997 Oct 2;337(14):949-55. 5. Veronesi U, Luini A, Del Vecchio M, Greco M, Galimberti V, Merson M, Rilke F, Sacchini V, Saccozzi R, Savio T, et al. Radiotherapy after breast-preserving surgery in women with localized cancer of the breast. N Engl J Med. 1993 Jun 3;328(22):1587-91
6. Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013. 19(11): p. 1423-1437
7. Tredan, O., et al., Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst, 2007. 99(19): p. 1441-1454.
8. Dvorak, H.F., et al., Tumor microenvironment and progression. J Surg Oncol, 2011. 103(6): p. 468-74.
9. Harrington, K.J., et al., Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer, 2011. 105(5): p. 628-39.
10. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47.
11. Koukourakis, M.I., et al., Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys, 2002. 53(5): p. 1192-202.
12. Engel, C.J., et al., Tumor angiogenesis predicts recurrence in invasive colorectal cancer when controlled for Dukes staging. Am J Surg Pathol, 1996. 20(10): p.
178
1260-5.
13. Barker, H.E., et al., The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer, 2015. 15(7): p. 409-25.
14. Galvin, J.M., et al., Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int J Radiat Oncol Biol Phys, 2004. 58(5): p. 1616-34. 15. Prise, K.M. and J.M. O'Sullivan, Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer, 2009. 9(5): p. 351-60. 16. Willson, R.L., W.A. Cramp, and R.M. Ings, Metronidazole ('Flagyl'): mechanisms of radiosensitization. Int J Radiat Biol Relat Stud Phys Chem Med, 1974. 26(6): p. 557-69. 17. Yarbro, C.H., D. Wujcik, and B.H. Gobel, Cancer nursing : principles and practice. 7th ed. 2011, Sudbury, Mass.: Jones and Bartlett Publishers. xlii, 1940 p., 2 p. of plates. 18. Raviraj, J., et al., Radiosensitizers, radioprotectors, and radiation mitigators. Indian J Dent Res, 2014. 25(1): p. 83-90. 19. Churchill-Davidson, I., et al., The place of oxygen in radiotherapy. Br J Radiol, 1966. 39(461): p. 321-31. 20. Dische, S., et al., Carcinoma of the cervix--anaemia, radiotherapy and hyperbaric oxygen. Br J Radiol, 1983. 56(664): p. 251-5. 21. Henk, J.M., P.B. Kunkler, and C.W. Smith, Radiotherapy and hyperbaric oxygen in head and neck cancer. Final report of first controlled clinical trial. Lancet, 1977. 2(8029): p. 101-3. 22. Rockwell, S., et al., Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med, 2009. 9(4): p. 442-58. 23. Horsman, M.R. and J. Overgaard, Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol), 2007. 19(6): p. 418-26. 24. Dennis, W.H. and M.B. Yatvin, Correlation of hyperthermic sensitivity and membrane microviscosity in E. coli K1060. Int J Radiat Biol Relat Stud Phys Chem Med, 1981. 39(3): p. 265-71. 25. Ben-Hur, E., M.M. Elkind, and B.V. Bronk, Thermally enhanced radioresponse
179
of cultured Chinese hamster cells: inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat Res, 1974. 58(1): p. 38-51. 26. Manfredi, J.J. and S.B. Horwitz, Taxol: an antimitotic agent with a new mechanism of action. Pharmacol Ther, 1984. 25(1): p. 83-125. 27. Schiff, P.B., J. Fant, and S.B. Horwitz, Promotion of microtubule assembly in vitro by taxol. Nature, 1979. 277(5698): p. 665-7. 28. Gravina, G.L., et al., Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol Cancer, 2010. 9: p. 305
29. W S Xu, R B Parmigiani & P A Marks, Histone deacetylase inhibitors: molecular mechanisms of action, Oncogene volume26, pages5541–5552 (13 August 2007) 30. Basu HS, Mahlum A, Mehraein-Ghomi F, Kegel SJ, Guo S, Peters NR, Wilding G (2011) Pretreatment with anti-oxidants sensitizes oxidatively stressed human cancer cells to growth inhibitory effect of suberoylanilide hydroxamic acid (SAHA). Cancer Chemother Pharmacol 67: 705-715 31. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769-784 32. Brenner C, Fuks F (2006) DNA methyltransferases: facts, clues, mysteries. Curr Top Microbiol Immunol 301: 45-66 33. Chia-Chian Hung, Active Tumor Permeation and Uptake of Surface Charge-Switchable Theranostic Nanoparticles for Imaging-Guided Photothermal/Chemo Combinatorial Therapy, Theranostics, 2016, 6(3), 302–317. (SCI) 34. Wei R. Chen, Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser, Cancer letters, January 6, 1995Volume 88, Issue 1, Pages 15–19 35. Luke, D.R., et al., Effects of Cyclosporine on the Isolated Perfused Rat-Kidney. Transplantation, 1987. 43(6): p. 795-799. 36. Jain, R.K., Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 2012. 64: p. 353-365. 37. Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 2005. 5(3): p. 161-71. 38. Torchilin, V.P., Multifunctional, stimuli-sensitive nanoparticulate systems for
180
drug delivery. Nat Rev Drug Discov, 2014. 13(11): p. 813-27. 39. Kumar, N., M.N. Ravikumar, and A.J. Domb, Biodegradable block copolymers. Adv Drug Deliv Rev, 2001. 53(1): p. 23-44. 40. Xu, H., et al., Macromolecular self-assembly and nanotechnology in China. Philos Trans A Math Phys Eng Sci, 2013. 371(2000): p. 20120305. 41. Pelicano, H., D. Carney, and P. Huang, ROS stress in cancer cells and therapeutic implications. Drug Resist Updat, 2004. 7(2): p. 97-110. 42. Trachootham, D., J. Alexandre, and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov, 2009. 8(7): p. 579-91. 43. Xu, Q., et al., Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromol Biosci, 2016. 16(5): p. 635-46. 44. Xiao, C., et al., Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polymer Chemistry, 2015. 6(5): p. 738-747. 45. Gupta, M.K., et al., Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. Journal of Controlled Release, 2012. 162(3): p. 591-598. 46. Li, J., et al., Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy. J Control Release, 2016. 225: p. 64-74. 47. Patel, A.R. and A.J. Stephenson, Radiation therapy for prostate cancer after prostatectomy: adjuvant or salvage? Nat Rev Urol, 2011. 8(7): p. 385-92. 48. Xiao, Q., et al., A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J Am Chem Soc, 2013. 135(35): p. 13041-8. 49. Mitteer, R.A., et al., Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Scientific Reports, 2015. 5. 50. Lotti, N., et al., Thiodiethylene glycol based polyesters: synthesis and thermal characterization. E-Polymers, 2006. 51. Liu, Z., et al., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 2008. 130(33): p. 10876-7.
181
52. Chung, D.M., J.H. Kim, and J.K. Kim, Evaluation of MTT and Trypan Blue assays for radiation-induced cell viability test in HepG2 cells. International Journal of Radiation Research, 2015. 13(4): p. 331-335.