研究生: |
陳立恆 Chen, Li-Heng |
---|---|
論文名稱: |
氮雜二苯環庚烯酮衍生之手性亞碸醯胺和醯胺 配體應用於不對稱合成之研究 Azadibenzocycloheptenone-derived Chiral Sulfinamide and Amide Ligand in Asymmetric Synthesis Application |
指導教授: |
陳建添
Chen, Chien-Tien |
口試委員: |
林俊成
Lin, Chun-Cheng 吳學亮 Wu, Hsyueh-Liang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 187 |
中文關鍵詞: | 不對稱合成 、手性亞碸醯胺 、氮雜二苯環庚烯酮 、碳氫鍵活化 、不對稱烯丙位烷化反應 、鈀錯合物 、催化 |
外文關鍵詞: | asymmetric synthesis, chiral sulfinamide, C–H bond activation, asymmetric allylic alkylation, palladium complex, catalysis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去十年來,本實驗室著重的研究項目為有機發光二極體以及不對稱催化與合成反應,皆有不錯的成果。最近幾年,近期本實驗室希望結合有機發光二極體以及不對稱催化之經驗進行新研究系統開發。本次研究中,我們對氮雜二苯環庚烯酮衍生之醯胺非手性配體與亞碸醯亞胺手性配體進行催化相關研究。
以乙酸鈀與我們開發的氮雜二苯環庚烯酮衍生之醯胺非手性配體於碳氫鍵活化反應,並未得到預期的產物。然而,純化出兩個配體錯合於一個鈀金屬型態的二聚體錯合物,並計畫在未來嘗試以銥金屬對相似結構進行碳氫鍵活化反應。
以氯化烯丙基鈀二聚物與我們開發的氮雜二苯環庚烯酮衍生之亞碸醯胺手性配體生成新型鈀錯合物,並用此手性錯合物作為催化劑,在氬氣與 50 ºC 下以無水甲苯為溶劑,二(三甲基矽基)醯胺 (N,O-Bis(trimethylsilyl)acetamide, BSA) 為鹼,進行 Tsuji-Trost 不對稱烯丙位烷化反應 (Tsuji-Trost asymmetric allylic alkylation, AAA)。產率介於 63%–94%,鏡像選擇性介於 44%–68% (R),並以分子模擬推測產物之手性中心構型形成過程。
In the past decade, our research group has laid solid foundation on organic light-emitting diodes and asymmetric catalytic transformation. Recently, we started to look at the use of 4-aza-DBEones as new templates for applications.
We use palladium(II) acetate to form the complex with the azadibenzocycloheptenone-derived sulfinimide ligands we developed. However, the C–H bond activation did not proceed and did not give the desired product. Nevertheless, the Pd dimer complex was isolated. The analogous Ir(I) complex-mediated C–H activation will be examined.
We discovered combination of allylpalladium(II) chloride dimer and our chiral azadibenzocycloheptenone-derived sulfinimide ligand can form a new type of palladium complexes. When the complex was examined as catalyst in Tsuji-Trost asymmetric allylic alkylation with N,O-Bis(trimethylsilyl)acetamide in toluene under agron at 50 ºC. The best result was achieved in high yields (63–94%) with enantiomeric excesses of 44%–68% (R). Molecular simulation was carried out to explain the origin of enantioselectivity.
1. (a) Trost, B. M.; D. L. Van Vranken, Chem. Rev., 1996, 96,395 (b) Trost, B. M.; Crawley, M. L. Chem. Rev., 2003, 103, 2921; (c) Tamaru, Y. Eur. J. Org. Chem., 2005, 2647; (d) Mohr J. T.; Stoltz,B. M. Chem. – Asian J., 2007, 2, 1476; (e)Lu, Z.; Ma, S. M. Angew. Chem., Int. Ed., 2008, 47, 258; (f) Poli, G.; Prestat, G.; Liron, F.; Kammerer- Pentier, C. Top. Organomet. Chem., 2012, 38, 1; (g) Bartels, B.; Garcia-Yebra, C.; Rominger, F.; Helmchen, G. Eur. J. Inorg. Chem. 2002, 2569. (h) Podlech, J.; Maier, T. C. Synthesis 2003, 633; (i) Miyabe, H.; Takemoto, Y. Synlett 2005, 1641; (j) Takeuchi, R.; Kezuka, S. Synthesis 2006, 3349; (k) Gnamm, C.; Broedner, K.; Krauter, C. M.; Helmchen, G. Chem. – Eur. J. 2009, 15, 10514; (l) Han, S. B.; Kim, I. S.; Krische, M. J. Chem. Commun. 2009, 7278; (m) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461; (n) Hartwig, J. F.; Pouy, M. J. Top. Organomet. Chem. 2011, 34, 169; (o) Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147.
2. Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
3. Kuwajima, I.; Nakamura, E.-i. Reactive Enolates from Enol Silyl Ethers. Acc. Chem. Res. 1985, 18, 181.
4. (a) Grabulosa, A.; Granell, J.; Muller, G.; Coord. Chem. Rev., 2007, 251, 25 (b) Grabulosa, A. P-Stereogenic Ligands in Asymmetric Catalysis, RSC Publishing, Cambridge, 2011.
5. Fernandez, I.; Khiar N. Chem. Rev., 2003, 103, 3651.
6. Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc., 1997, 119, 9913.
7. (a) Owens, T.; Hollander, F.; Oliver, A.; Ellman, J. J. Am. Chem. Soc., 2001, 123, 1539; (b) Souers, A.; Owens, T.; Oliver, A.; Hollander, F.; Ellman, J. Inorg. Chem., 2001, 40, 5299; (c) Mellah, M.; Voituriez, A. ; Schulz, E. Chem. Rev., 2007, 107, 5133; (d) Worch, C.; Mayer, A. C. ; Bolm, C. Organosulfur Chemistry in Asymmetric Synthesis, Toru, T. & Bolm, C., Eds.; Wiley: New York, 2008.
8. Zhang,Z. Z; Chen, P.; Li, W.; Niu Y.,; Zhao, X. ; Zhang J. Angew. Chem., Int. Ed., 2014, 53, 4350.
9. Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6,. 4387.
10. (a)Atkins, K. E.; Walker, W. E.; Manyik, R. M. Tetrahedron Lett. 1970, 3821; (b) Hata, G.; Takahashi, K.; Miyake, A. J. Chem. Soc., Chem. Commun. 1970, 1392.
11. Trost, B. M.; Fullerton T. J. J. Am. Chem. Soc., 1973, 95 , 292.
12. Trost, B. M.; Dietsche, T. J. J. Am. Chem. Soc. 1973, 95, 8200.
13. Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.
14. Gao N.; Zhao X.; Cai C.; Cai J. Org. Biomol. Chem. 2015, 13, 9551.
15. Ma J.;Li C.; Zhang D.; Lei Y.; Li M.; Jiang R.; Chen W. RSC Adv., 2015, 5, 35888.
16. Jiang, Y. J.; Zhang, G. P.; Huang, J. Q.; Chen, D.; Ding, C. H.; Hou, X. L. Org. Lett., 2017, 19 (21), 5932.
17. Zhao, Z.-L.; Gu, Q.; Wu, X.-Y.; You, S.-L. Chem. Asian J. 2017, 12, 2680.
18. Lian, W.-F.; Wang, C.-C.; Kang, H.-P.; Li, H.-L.; Feng, J.; Liu, S.; Zhang, Z.-W. Tetrahedron Lett. 2017, 58, 1399.
19. Naganawa Y.; Abea H.; Nishiyama H. Chem. Commun., 2018, 54, 2674.
20. Nascimento de Oliveira; Arseniyadis M.; Cossy, S. J. Chem. Eur. J. 2018, 24, 4810.
21. Yu, F.-L.; Bai, D.-C.; Liu, X.-Y.; Jiang, Y-J.; Ding, C-H.; Hou, X.-L. ACS Catal., 2018, 8, 3317–3321.
22. Gao, R.-D.; Ding, L.; Zheng, C.; Dai, L.-X.; You, S.-L. Org. Lett. 2018, 20, 748.
23. Meza, A. E.; Wurm, T.; Smith, L.; Kim, S. W.; Zbieg, J. R.; Stivala, C. E.; Krische, M. J. J. Am. Chem. Soc. 2018, 140, 1275.
24. 19 th WHO Model List of Essential Medicines (April 2015).
25. Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
26. Chang, R. K.; Ng, C.; Bock M. G. Tetrahedron Lett. 2004, 45, 6641.
27. Piggott, A. M., and Karuso, P. Tetrahedron Lett. 2007, 48, 7452
28. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.
29. T. Flessner, S. Doye. J. Prakt. Chem. 1999, 341, 186.
30. Maras, N.; Polanc, S.; Kocevar, M. Tetrahedron Lett. 2008, 64, 11618.
31. Bourgeois, D; Craig, D.; King, N. P.; Mountford, D. M.; Angew. Chem., 2005, 44, 618.
32. Takahashi, E.; Fujisawa, H.; Mukaiyama T. Chem. Lett. 2004, 33, 936.
33. Wang, B.; Sun, H. X.; Sun, Z. H. J. Org. Chem. 2009, 74, 1781.
34. Hunter, C. A; Sanders, J. M. K. J. Am. Chem. Soc. 1990, 112, 5525.
35. (a) Quagliano, J. V.; Schubert, Leo. Chem. Rev. 1952, 50, 201; (b) Basolo, F.; Pearson, R. G. Prog. Inorg. Chem. 1962, 4, 381; (c) Hartley, F. R. Chem. Soc. Rev. 1973, 2, 163.