簡易檢索 / 詳目顯示

研究生: 鄭百廷
Cheng, Pai-Ting
論文名稱: 電壓誘發柱狀聚苯乙烯成長動力學
The kinetics of PS pillar induced by electric field
指導教授: 李三保
Lee, San-Boh
口試委員: 侯春看
Hou, Chun-Kan
鄒若齊
Zou, Ruo-Ci
黃健朝
Huang, Jian-Chao
蔣東堯
Jiang, Dong-Yao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 138
中文關鍵詞: 聚苯乙烯柱狀板高柱狀直徑
外文關鍵詞: polystyrene, pillar, spacer height, diameter of pillar
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 觀察聚苯乙烯薄膜在高溫下通電壓使其不穩定的成長動力學, 並
    觀察他的直徑跟高度變化, 我們利用原子力顯微鏡跟光學顯微鏡來
    分析他的圓柱成長,討論在改變溫度,改變膜厚,改變板高,最後是被紫
    外光照射的圓柱成長情形,我們比較在相同實驗條件下,PMMA 跟 PS
    的兩種高分子材料的成長機制, 我們定量分析中間部分的圓柱, 並研
    究高分子柱跟柱之間的距離變化, 柱跟柱之間彼此距離會隨時間增
    加而增加, 最後達到一個穩定狀態並獲得最大值, 我們對柱跟柱之間
    最大的距離進行數據模擬得出關係
    -0.78E
    為我們的實驗結果, 我
    們利用不同實驗條件來得到 EHD 柱狀結構的微度, 並提供資訊給不
    同領域 EHD 的應用


    In the present study, we investigated kinetics of diameter and height
    growth of PS pillar by using electrohydrodynamic (EHD) induced
    polymer film instabilities. We used AFM and OM to analyze the growth
    of the pillars. The effects of the condition of temperature, film thickness,
    spacer height and UV irradiation on the pillars growth and pillars
    formation were investigated. We also compared the growth of the PS and
    the PMMA, which mechanisms are different. PS is 3-D diffusion
    mechanism, but PMMA is 2-D diffusion mechanism. Finally, we
    measured the periodical pattern of the pillars (λ) from the middle part of
    substrate to quantitatively analyze. The wavelength of the pillars
    increases with increase of the annealing time until pillars reach steady.
    The logarithm characteristic wavelength (λ) versus logarithm electric
    field (E) has the relation
    -0.78E . The experiment controlled pillar-scale
    from EHD on a polymer film by different experimental conditions that
    can provide information for wide range of application on EHD

    Abstract………………………………………………1 摘要 誌謝 Chapter 1 introduction………………………….…….1 Chapter 2 Experiment………………………………5 Chapter 3 results and discussion…………………………19 Chapter 4 Conclusion………….…………………………...132 Reference…………………………….……………………...134

    References
    [1] J. Bae, Electrohydrodynamic instabilities of polymer thin films: Filler effect.
    Journal of Industrial and Engineering Chemistry 18, 378–383 (2012) .
    [2] S. Y. Chou and L. Zhuang, Lithographically induced self-assembly of periodic
    polymer micropillar arrays. Journal of Vacuum Science & Technology B, 173,
    197-202 (1999).
    [3] M. J. Fasolka and A. M. Mayes, Block copolymer thin films: physics and
    applications. Annual Review of Materials Research. 31, 323-355 (2001).
    [4] J. Peng, H. F. ,Wang, B. Y. Li, Y. C. Han, Pattern formation in a confined polymer
    film induced by a temperature gradient. Polymer 45 (23), 8013-8017 (2004).
    [5]J. Polte. Fundamental growth principles of colloidal metal nanoparticles-a new
    perspective. Journal of The Royal Society of Chemistry , 17, 6809-6830 (2015)
    [6] S. Y. Chou, L. Zhuang and L. J. Guo, Lithographically induced self-construction
    of polymer microstructures for resistless patterning, Applied Physics Letters, 75,
    1004–1006 (1999).
    [7] E. Schäffer, T. Thurn-Albrecht, T.P. Russell, and U. Steiner, Electrohydrodynamic
    instabilities in polymer films. Europhysics Letters., 53, 518-524 (2001).
    [8] K. A. Leach, S. Gupta, M. D. Dickey, C. G. Willson, and T. P. Russell, Electric
    field and dewetting induced hierarchical structure formation in polymer/polymer/air
    trilayers. Chaos, 15 (4), 047506 (2005).
    [9] H. M. Tian, Y. C. Ding, J. Y. Shao, X. M. Li, and H. Z. Liu, Formation of irregular
    micro- or nano-structure with features of varying size by spatial fine-modulation of
    electric field. Soft Matter, 9 (33), 8033-8040 (2013).
    [10]N. Wu, M. E. Kavousanakis, and W. B. Russel, Coarsening in the
    electrohydrodynamic patterning of thin polymer films. Physical Review E, 81 (2),
    135
    026306 (2010).
    [11] Y. Li , S. H. S. Lai, N. Liu , G. Zhang , L. Liu , G.B. Lee and Wen Jung Li,
    Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically
    Induced Electrokinetics. Micromachines, 7, 65 (2016).
    [12] L. Tonks, A theory of liquid surface rupture by a uniform electric field. Physical
    Review, 48 (6), 562-568 (1935).
    [13] C. Y. Lau and W. B. Russel, Fundamental Limitations on Ordered
    Electrohydrodynamic Patterning. Macromolecules, 44(19), 7746–7751 ( 2011).
    [14] D. Bandyopadhyay, and A. Sharma, Self-Organized Microstructures in Thin
    Bilayers on Chemically Patterned Substrates. Jounal of Physical Chemistry C, 114 (5),
    2237-2247 (2010).
    [15] K. Mondal, P. Kumar, and D. Bandyopadhyay, Electric field induced instabilities
    of thin leaky bilayers: Pathways to unique morphologies and miniaturization. Journal
    of Chemical Physics., 138 ( 2), 024705 (2013).
    [16]G. Amarandei, P. Beltrame, I. Clancy, C. O'Dwyer, A. Arshak, U. Steiner, D.
    Corcoran, and U. Thiele, Pattern formation induced by an electric field in a
    polymer-air-polymer thin film system. Soft Matter, 8(23), 6333-6349 (2012).
    [17] L. F. Pease, and W. B. Russel, Charge driven electrohydrodynamic patterning of
    thin films. Journal of Chemical Physics., 125( 18) 184716 (2006).
    [18] L. Wu, and S. Y. Chou, Electrohydrodynamic instability of a thin film of
    viscoelastic polymer underneath a lithographically manufactured mask. Journal of
    Non-Newton Fluid, 125( 2-3) 91-99 (2005).
    [19] G. Tomar, V. Shankar, A. Sharma, and G. Biswas, Electrohydrodynamic
    instability of a confined viscoelastic liquid film. Journal of Non-Newton Fluid, 143,
    120-130 (2007).
    [20] N. Liu, P. Li, L. Liu, H. Yu, Y. Wang, G. B. Lee, and W. J. Li, 3-D non-UV digital
    136
    printing of hydrogel microstructures by optically controlled digital
    electropolymerization. Journal of Microelectromech. System, 9, 2128–2135 (2015).
    [21] X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Formation of arbitrary patterns in
    ultraviolet cured polymer film via electrohydrodynamic patterning. Scientific World
    Journal. 2014, 840497. (2014).
    [22] A. Brown, G. Burke, and B. Meenan, Patterned cell culture substrates created by hot
    embossing of tissue culture treated polystyrene. Journal of Materials Science, 12,
    2797-2807 (2013).
    [23] Y. Li, G. Huang, X. Zhang, L. Wang, T.J. Lu, and F. Xu. Engineering cell alignment
    in vitro. Biotechnology Advances, 32, 347-365 (2014).
    [24] Y. Ito, Surface micropatterning to regulate cell functions Biomaterials, Biotechnology
    Advances 20, 2333-2342 (1999)
    [25] C. H. Trease, M. R. Longman. A. T. Augoust, P. J. S Foot, and B. Pierscionek,
    Cell morphology and growth observation studies on novel, chemically unmodified
    and patterned polymer surfaces for advanced tissue culture applications. Polymer 109,
    13-24 (2017).
    [26] N. Liu, W. Liang, L. Liu, Y. Wang, J. D. Mai, G. B. Lee, and W. J. Li,
    Extracellular-controlled breast cancer cell formation and growth using non-UV
    patterned hydrogels via optically-induced electrokinetics. Lab Chip 14, 1367–1376
    (2014).
    [27] M. Ventre, F. Causa, and P. Netti, Determinants of cell-material crosstalk at the
    interface: towards engineering of cell instructive materials Journal of The Royal
    Society Interface, 9, pp. 2017-2032, (2012).
    [28] F. Ruffino, V. Torrisi, G. Marletta and M. Grimaldi, Patterning of templated-confined
    137
    nanoscale Au films by thermal-induced dewetting process of a poly(methylmethacrylate)
    underlying layer. Journal of Application Physical., 112, 124316 (2012).
    [29] L. Xue and Y. Han, “Pattern formation by dewetting of polymer thin film,” Progress
    in Polymer Science, 36, no. 2, P. 269–293 (2011).
    [30] S. Manigandana, S. Majumder, A. Suresh, S. Ganguly, K. Kargupta, and D. Banerjee,
    Electric field induced dewetting and pattern formation in thin conducting polymer film
    Sens. Actuators B: Chemica., 144, pp. 170-175 (2010).
    [31] H. C. Wong, and J. T. Cabral, Spinodal clustering in thin films of
    nanoparticle-polymer mixtures. Physical Review Letter, 105, 038301 (2010).
    [32] G. Amarandei, C. O’Dwyer, A. Arshak, and D. Corcoran, Fractal Patterning of
    Nanoparticles on Polymer Films and Their SERS Capabilities. ACS Application of
    Material Interfaces, 5, 8655−8662 (2013).
    [33] I. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, Micro- and
    nanostructured surfaces for selective solar absorption, Advanced Optical Material, 3,
    852–881 (2015).
    [34] J. S. Peng, F. Yang, D. Chiang, and S. Lee, Kinetics of Field-Induced Surface
    Patterns on PMMA. Langmuir, 32(18), 4602−4609 (2016).
    [35] Y. F. Chuang, J. S. Peng, F. Yang, D. Chiang and S. Lee, Field-induced formation
    and growth of pillars on films of bisphenol-A-polycarbonate RSC Advance, 7,
    9015-9023, (2017).
    [36] M. Y. Li, Y. F. Chuang, F. Yang and S. Lee, Evolution of color centers in
    UV-irradiated syndiotactic polystyrene at elevated temperatures. Materials Research
    Express 4 ,025301 (2017)
    [37] M. Palacios, O. García and J. Rodríguez-Hernández, Constructing robust and
    functional micropatterns on polystyrene surfaces by using deep UV irradiation.
    Langmuir, 29( 8), 2756-2763 (2013).
    138
    [38] B. Ranby and J. Lucki, New aspects of photodegradation and photooxidation of
    polystyrene. Pure and Applied Chemistry, 52(2), 295-303 (1980).
    [39] C. Wang, C. C. Lin, and C. P. Chu, Crystallization and Morphological Features of
    Syndiotactic/Atactic Polystyrene Blends at Low Temperatures near Glass Transition,
    Macromolecules, 39, 9267-9277 (2006).
    [40] D.K. Owens and R.C. Wendt, Estimation of the surface free energy of polymers.
    Journal of Applied Polymer Science, 13, 1741-1747 (1969).
    [41] M. Żenkiewicz, , Methods for the calculation of surface free energy of solids.
    Journal of achievements in materials and manufacturing engineering, 24(1), 137-145
    (2007).
    [42] K.C. Ho,” Buffer-induced surface patterns of Irradiated Poly(2-Hydroxyethyl
    Methacrylate)” Master Thesis, National Tsing Hua University (2010)
    [43] E. Schäffer, Instabilities in Thin Polymer Films: Structure Formation and Pattern
    Transfer, Ph. D Thesis, Konstanz University, P. 23, (2001)
    [44] L.F Pease and W. B. Russel, Limitations on length scales for electrostatically
    induced submicrometer pillars and holes, Langmuir, 20, 795-804 (2004)

    QR CODE