簡易檢索 / 詳目顯示

研究生: 張錦標
CHANG, CHIN-PIAO
論文名稱: 結合十六個Fabry-Perot etalons與PIN 光偵測器之矽微光譜儀
A 16-Channel Array-Type Microspectrometer Using Integrated Fabry-Perot Etalons and Lateral PIN Photodetectors
指導教授: 黃瑞星
Huang, Ruey-Shing
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 79
中文關鍵詞: 微光譜儀法羅里-佩洛光偵測器
外文關鍵詞: microspectrometer, Fabry-Perot, Photodetector
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中描述矽微光譜儀的設計、製作及量測,光譜儀不論在科學、工業及消費性產品上都被廣泛地應用,而本論文的目的即是利用微機電系統的技術來開發積體化的微光譜儀,如此便可利用已成熟的半導體製程的優點:批次量產、微小化、低成本。
    矽微光譜儀利用十六組不同共振腔長度的Fabry-Perot etalons(FPE),來達到過濾十六個波道的可見光,並配合Lateral PIN Photodetector來達成直接將光訊號轉換成電訊號;而在FPE的結構上是採用空氣為共振腔,並以銀分別為二個部份穿透的鏡面,而為了達到不同長度的共振腔,本論文利用二氧化矽薄膜為材質的微橋式結構會有出平面變形的特性,設計十六個不同長度的微橋式結構來達到不同高度的出平面變形,進而帶動低應力氧化矽薄膜與銀組成的鏡面,再與鍍上銀反射面的光偵測器組成FPE;完成的矽微光譜儀的面積為8.8mm×8.8mm,操作範圍為400nm至700nm。


    In this paper, we describe a novel integrated array type microspectrometer based on Fabry-Perot etalons. The spectral analysis of visible light is achieved by an array of Fabry-Perot etalons with different resonance gaps. Each resonance gap is determined by the central deflection of prebuckled bridge when it is in the down position. In this design, the microspectrometer has 16-channels, each channel only allows one single peak of narrow wavelength band to pass. The fabrication of 16-channel can be done with only one lithography process without N subsequent etching steps. An array of photodetectors is also integrated beneath the Fabry-Perot etalons to form the microspectrometer.

    目次 第一章 簡介-----------------------------------------------------------------------1 1.1 微機電系統(MEMS,Micro-Electro-Mechanical-Systems)-----------1 1.2 微機電式Fabry-Perot filter-------------------------------------------------1 1.3 新型矽微光譜儀-------------------------------------------------------------5 第二章 機械與光學理論--------------------------------------------------------7 2.1簡介-----------------------------------------------------------------------------7 2.2薄膜應力-----------------------------------------------------------------------7 2.3光學理論---------------------------------------------------------------------10 2.3.1簡介-------------------------------------------------------------------------10 2.3.2利用矩陣法計算多層膜之反射與透射光譜-------------------------11 2.3.3 操作於可見光波段的Fabry-Perot etalons及其各項參數--------15 2.3.4 反射鏡---------------------------------------------------------------------17 2.4 矽微光譜儀之數值模擬--------------------------------------------------18 第三章 微機電製造技術------------------------------------------------------23 3.1 矽微加工技術--------------------------------------------------------------23 3.2 BOE阻擋層-----------------------------------------------------------------24 3.3 PECVD TEOS oxide特性之研究----------------------------------------26 3.3.1 應力與沈積速率---------------------------------------------------------28 (a) TEOS流量的影響(樣品編號 19-23)------------------------------------29 (b) TMP流量的影響(樣品編號 28-32)-------------------------------------29 (c) 摻雜CF4的影響(樣品編號 33-38)--------------------------------------30 (d) 電漿功率的影響(樣品編號 24-27)-------------------------------------31 (e) 退火的影響(樣品編號19-27)--------------------------------------------32 (f) TEOS oxide薄膜在BOE與N2H4溶液中的蝕刻速率---------------34 第四章 矽微光譜儀之製作---------------------------------------------------38 4.1 簡介--------------------------------------------------------------------------38 4.2 光偵測器之製作-----------------------------------------------------------38 4.3 微橋式結構變形之測試--------------------------------------------------40 4.4 十六個不同出平面位移的氮化矽薄膜之製作-----------------------42 4.5 晶片黏合製程--------------------------------------------------------------48 4.6 打線與封裝-----------------------------------------------------------------51 第五章 矽微光譜儀之量測與討論------------------------------------------53 5.1 簡介--------------------------------------------------------------------------53 5.2 微橋式結構變形之測試--------------------------------------------------53 5.3光偵測器之量測------------------------------------------------------------55 5.4 十六個二氧化矽微橋式結構與低應力氮化矽薄膜之量測--------56 5.5 矽微光譜儀之量測--------------------------------------------------------59 5.5.1 量測儀器設置------------------------------------------------------------59 5.5.2 單光儀光譜之量測------------------------------------------------------62 5.5.3 微光譜儀元件量測------------------------------------------------------63 5.6 討論--------------------------------------------------------------------------73 第六章 結論與未來研究之建議---------------------------------------------79

    [1] http://www.dlp.com
    [2] http://www.analog.com
    [3] http://www.nortelneworks.com
    [4] J. M. Vaughan and M. A. DPhil, ”The Fabry-Perot Interferometer: History, Theory, Practice and Application”, The Adam Hilger Series on Optics and Optoelectronics, 1989
    [5] G. Hernandez, “Fabry-Perot Interferometers”, Cambridge University Press, 1986
    [6] 1999, S.O. Kasap, Optoelectronics (Prentice Hall)
    [7] J. H. Jerman, D. J. Clift and S. R. Mallinson, “A miniature Fabry-Perot Interfeometer with a Corrugated Silicon Diaphragm Support”, Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, 4-7 June 1990, p140-144
    [8] N. F. Raley, D. R. Ciario, J. C. Koo, B. Beiriger, J. Trujillo, C. Yu, G. Loomis and R. Chow , “A Fabry-Perot Microinterferometer for Visible Wavelength”, Solid-State Sensor and Actuator Workshop, 1992. 5th Technical Digest., IEEE, 22-25 June 1992, p170-173
    [9] J.H. Correia, M. Bartek and R.F. Wolffenbuttel, “Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range”, Sensors and Actuators 76 1999 p191–196
    [10] J. H. Correia, G. de Graaf, S.H. Kong, M. Bartek and R.F. Wolffenbuttel,” Single-chip CMOS optical microspectrometer”, Sensors and Actuators 82 2000 191–197
    [11] S.M.Sze, ”Semiconductor Sensors”, John Wiley & Sons, 1994
    [12] G. G. Stoney: Proc. R. Soc. London Ser. A 82 (1909) 172.
    [13] W. Fang and J. A. Wicket, “Determining mean and gradient residual stress in thin films using micromachined cantilever”, Journal of Micromechanics and Microengineering, Vol. 6 (1996) p301-309
    [14] W. Fang, C. H. Lee and H. H. Hu, “On the Buckling Behavior of Micromachined Beams”, J. Micromech. Microeng. 9 (1999) p236-244
    [15] L. Elbrecht, U. Storm, R. Catanescu and J. Binder, “Comparison of stress measurement techniques in surface micromachining”, J. Micromech. Microeng. 7 (1997) p151-154
    [16] U. Lindberg, J. Soderkvist, T. Lammerink and M. Elwenspoek, “Quasi-Buckling of Micromachined Beams”, J. Micromech. Microng. 3 (1993) p183-186
    [17] W. Fang and J. A. Wicket, “Post-Buckling of Micromachined Beams”, Micro Electro Mechanical Systems, 1994, MEMS '94, Proceedings, IEEE Workshop on , 25-28 Jan. 1994
    Pages:182 – 187
    [18] 李正中,”薄膜光學與鍍膜技術”,藝軒圖書出版社 1999
    [19] J. Higino G. Correia,” Optical Microsystems in Silicon Based on a Fabry-Perot Resonance Cavity”, thesis, 1999
    [20] G.T.A. Kovacs, N.I. Maluf and K. E. Peterson, “Bulk micromachining of silicon” Proceeding of IEEE, 86 (1998), 8, p1536-1551
    [21] G.T.A. Kovacs, “Micromachined Transducers Source Book”, McGraw-Hill
    [22] D. J. Monk, D. S. Soane and R. T. Howe, “A Review of the Chemical Reaction Mechanism and Kinetics for Hydrofluoric Acid Etching of Silicon Dioxide for Surface Micromachining Applications”, Thin Solid Films, 232 (1993), p1-12
    [23] D. J. Monk, D. E. Soane, and R. T. Howe, “Hydrofluoric Acid Etching of Silicon Dioxide Sacrifical Layer I. Experimental Observations”, J. Electrochem. Soc., Vol. 141, No. 1, 1994, p264-269
    [24] D. J. Monk, D. E. Soane, and R. T. Howe, “Hydrofluoric Acid Etching of Silicon Dioxide Sacrifical Layer II. Modeling”, J. Electrochem. Soc., Vol. 141, No. 1, 1994, p270-274
    [25] D. C. S. Bien, P. V. Rainey, S. J. N. Mitchell and H. S. Gamble, “Characterization of masking materials for deep glass micromachining”, J. Micromech. Microeng. 13 (2003) S34-S40
    [26] C. H. Lin, G. B. Lee, Y. H. Lin and G. L. Chang, “A fast prototyping process for fabrication of microfluidic systems on soda-lime glass”, J. Micromech. Microeng, 11 (2001) 726-732
    [27] A. Grosse, M. Grewe and H. Fouckhardt, “Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices”, J. Micromech. Microeng. 11 (2001) 257-262
    [28] M. Stjernstrom and J. Roeraade, “Method for fabrication of microfluidic systems in glass”, J. Micromech. Microeng, 8 (1998) 33-38
    [29] T. Corman, P. Enoksson and G. Stemme, “Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask”, J. Micromech. Microeng. 8 (1998) 84-87
    [30] V. N. Hung, T. Abe, P. N. Minh and M. Esashi, “High-frequency one-chip multichannel quartz crystal microbalance fabricated by deep RIE”, Sens. Actuators A 108 (2003) 91-96
    [31] Z. H. Fan and D. J. Harrison, “Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections”, Anal. Chem. 66 (1994) 177-184
    [32] Z. Yang, H. Goto, M. Matsumoto and R. Maeda, “Active micromixer for microfluidic systems using lead-zirconate-titanate (PZT)-geneerated ultrasonic vibration”, Electrophoresis 21 (2000) 116-119
    [33] A. Berthold, P. M. Sarro and M. J. Vellekoop, “Two-step glass wet-etching for micro-fluidic devices”, Proceedings of the SeSens workshop 2000, p613-616
    [34] T. I. Kamins, “Design Properties of Polycrystalline Silicon”, Sensors and Actuators, A21-A23 (1990) p817-824
    [35] P. J. French, B. P. van Drieenhuizen, D. Poenar, F. L. Goosen, R. Mallee, P. M. Sarro and R. F. Wolffenbuttel, “The Development of a Low-Stress Polysilicon Process Compatible with Standard Device Processing”, Journal of Microelectromechanical Systems, Vol. 5, No. 3, 1996, p187-196
    [36] L. Elbrecht, R. Catanescu, J. Zacheja, and J. Binder, “Highly phosphorus-doped polysilicon films with low tensile stress for surface micromachining using POCl3 diffusion doping”, Sensors and Actuators A 61 (1997) p374-378
    [37] A. Tarraf, J. Daleiden, S. Irmer, D. Prasai and H. Hillmer: J. Micromech. Microeng. 14 (2004) 317.
    [38] K. Danaie, A. Boosseboeuf, C. Clerc, C. Gousset and G. Julie: Sens. and Actuat. A 99 (2002) 78.
    [39] X. Zhang, K.-S. Chen, R. Ghodssi, A. A. Ayon and S. M. Spearing: Sens. and Actuat. A 91 (2000) 379.
    [40] M. N. P. Carreno, M.I. Alayo, I. Pereyra and A. T. Lopes: Sens. and Actuat. A 100 (2002) 295.
    [41] T. Storgaard-Larsen, S. Bouwstra and O. Leistiko: Sens. and Actuat. A 52 (1996) 25.
    [42] S. Rojas, L. Zanotti, A. Borghesi, A. Sassella and G. U. Pignatel: J. Vac. Sci. & Technol. B 11 (1993) 2081.
    [43] C. L. Pillote, F. A. Shemansky, T. S. Cale and G. B. Raupp: Thin Solid Films 236 (1993) 287.
    [44] W. S. Yoo, R. Swope, B. Sparks and D. Mordo: Journal of Materials Research 12 (1997) 70
    [45] M. Yoshimaru, S. Koizumi, K. Shimokawa, Y. Mori., H. Fukuda and N. Matsuki: J. Vac. Sci. & Technol. A 17 (1999) 425
    [46] S. Donati,”Photodetectors”, Prentice Hall, 1999
    [47] H. Seidel, “The Mechanism of Anisotropic Silicon Etching and Its Relevance for Micromaching”, Transducers 87, pp 120-125
    [48] E. Bassous, “Fabrication of Novel Three-Dimensional Microstructures by the Anisotropic Etching of (100) and (110) Silicon”, IEEE Transactions on Electron Devices, Vol. 25, No. 10, 1978
    [49] A. Reisman, M. Berkenblit, S. A. Chan, F. B. Kaufamn, and D. C. Green, “The Controlled Etching of Silicon in Catalyzed Ethylenediamine-Pyrocatechol-Water Solutions”, J. Electrochem. Soc. Vol. 126, No. 8, p1406-1418
    [50] X. P. Wu, Q. H. Wu and W. H. Ko, “A Study of Deep Etching of Silicon Using Ethylenediamine-Pyrocatechol-Water”, Sensors and Actuators, 9 (1986), p333-343
    [51] R. M. Finne and D. L. Klein, “A Water-Amine-Complexing Agent System for Etching Silicon”, J. Electrochem. Soc., Vol. 114, No. 9, 1967, p965-970
    [52] N. F. Raley, Y. Sugiyama and T. Van Duzer, “(100) Silicon Etch-Rate Dependence on Boron Concentration in Ethylenediamine-Pyrocatechol-Water Solutions”, J. Electrochem. Soc., Vol. 131, No. 1, 1984, p161-171
    [53] R. L Gealer, H. K. Karsten and S. M. Ward, “The Effect of an Interfacial P-N Junction on the Electrochemical Passivation of Silicon in Aqueous Ethylenediamine-Pyrocatechol”, J. Electrochem. Soc., Vol. 135, No. 5, 1988, p1180-1183
    [54] H. Y. Lin and W. Fang, “Rib-reinforced micromachined beam and its applications”, J. Micromech. Microeng. 10 (2000) 93–99.
    [55] Z. Irena, B. Irena, K. Kamilla, and K. Malgorzata, ”Silicon anisotropic etching in alkaline solutions IV: The effect of organic and inorganic agents on silicon anisotropic etching process”, Sensors and Actuators A, Vol. 87, Iss. 3 (2001), p.163-171
    [55] S. Kazuo, S. Mitsuhiro, Y. Takashi., A. Kazuo, I. Yasuroh, and Y. Masaharu, “Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation”, Sensors and Actuators A, Vol. 73, Iss. 1-2 (1999), p131-137
    [56] P. H. Chen, H. Y. Peng, C. M. Hsieh, and M. K. Chyu.,” The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO2 layer”, Sensors and Actuators A, Vol. 93, Iss. 2 (2001), p132-137
    [57] G. Yan, C. H. Chan, I. M. Hsing, R. K. Sharma, K. O. Sin, and Y. Y. Wang, “An improved TMAH Si-etching solution without attacking exposed aluminum”, Sensors and Actuators A, Vol. 89, Iss. 1-2 (2001), p. 135-141
    [58] S. Kaoru and A. Sadao, “Study of Si(1 0 0) surfaces etched in TMAH solution”, Sensors and Actuators A, Vol. 88, Iss. 1 (2001), p.71-78
    [59] Z. Irena and K. Malgorzata, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions”, Sensors and Actuators A, Vol. 93, Iss. 2 (2001), p.138-147
    [60] E. van Veenendaal, K. Sato, M. Shikida, and J. van Suchtelen, “Micromorphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH and TMAH”, Sensors and Actuators A, Vol. 93, Iss. 3 (2001), p.219-231
    [61] P. M. Sarro, D. Brida, W. V. D. Vlist, and S. Brida, “Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions”, Sensors and Actuators A, Vol. 85, Iss. 1-3 (2000), p.340-345
    [62] P. W. Barth, “Silicon fusion bonding for fabrication of sensors, actuators and microstructures”, Sensors and Actuators, A21-A23 (1990) p919-926
    [63] S. Shoji, H. Kikuchi, H. Torigoe, “Low-temperature anodic bonding using lithium aluminosilicate – quartz glass ceramic, Sens. Actuators, A 64 (1998) p1575-1585
    [64] M. Nese and A. Hanneborg, “Anodic bonding of Silicon to Silicon Wafers Coated With Aluminium, Silicon Oxide, Polysilicon, or Silicon Nitride”, Sensors and Actuators A, 37-38 (1993), p61-67
    [65] M. Esashi, A. Nakano, S. Shoji, and H. Hebiguchi, “Low-temperature Silicon-to-silicon Anodic Bonding with Intermediate Low Melting Poing Glass”, Sensors and Actuators A, 21-23 (1990), p931-934
    [66] J. W. Berenschot, J. G. E. Gardeniers, T. S. J. Lammerink, and M. Elwenspoek, “New Applications of R.F.-sputtered Glass Films as Protection and Bonding Layers In Silicon Micromachining”, Sensors and Actuators A, 41-42 (1994), p338-343
    [67] R.F. Wolffenbuttel, “Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond”, Sens. Actuators, A 62 (1997) p680-686
    [68] A. L. Tiensuu, J. A. Schweitz and S. Johansson, “In stiu Investigation of Precise High Strength Micro Assembly Using Au-Si Eutectic Bonding”, Transducers 95, Jun 25-29, pp236-239
    [69] A. L. Tiensuu, M. Bexell, J. A. Schweitz, L. Smith and S. Johansson, “Assembling three-dimensional microstructures using gold-silicon eutectic bonding”, Sensors and Actuators A 45 (1994) p227-236
    [70] Y. C. Chen, W. W. So and C. C. Lee, “A Fluxless Bonding Technology Using Indium-Silver Multilayer Composites”, IEEE Tran. On Components, Packaging, and Manufacturing Technology-Part A, Vol. 20, No. 1, Mar 1997, p46-51
    [71] F. Niklaus, P. Enoksson, E. Kalvesten and G. Stemme, “Low-temperature full wafer adhesive bonding”, J. Micromech. Microeng., 11 (2001) p100-107
    [72] C. T. Pan, H. Yang, S. C. Shen, M. C. Chou and H. P. Chou, “A Low-temperature Wafer Bonding Technique Using Patternable Materials”, J. Micromech. Microeng. 12 (2002), p.611-615.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE