研究生: |
潘世惟 Phan, The Duy |
---|---|
論文名稱: |
使用超臨界二氧化碳對木質纖維素生物質進行連續前處理的方法 SEQUENTIAL PRETREATMENT METHODS WITH SUPERCRITICAL CO2 FOR LIGNOCELLULOSIC BIOMASS |
指導教授: |
談駿嵩
Tan, Chung-Sung |
口試委員: |
區迪頤
Ou, John 朱一民 Chu, I-Ming 張嘉修 Chang, Jo-Shu 陳郁文 Chen, Yu-Wen |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 100 |
中文關鍵詞: | 木質纖維素 、前處理方法 、超臨界二氧化碳 、超聲波 |
外文關鍵詞: | Lignocellulosics, Pretreatment, Supercritical carbon dioxide, Ultrasound |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
木質纖維素生物質可用於生產乙醇,一種在原油有限的現實中具前景的替代能源。在轉化過程中分成兩個程序:水解木質纖維素生物質中的纖維素以產生還原糖以及使糖發酵生成乙醇。使用目前的技術從木質纖維素原料生產乙醇的成本相當高,主要的困難點在低產率以及水解的高成本。相當多的研究致力於提高木質纖維素原料的水解效率,前處理以移除木質纖維素原料中的木質素和半纖維素可以有效提升水解纖維素的效率。然而木質纖維素生物質主要成分的緊密連結造成物理與化學上的阻礙,限制了纖維素的水解與木質素、半纖維素的分離。因此,根據選擇用來進行串聯水解和發酵步驟的裝置,我們需要選擇不同的前處理方法和條件。目前研究著重探究新的前處理方法,將超臨界二氧化碳(scCO2)與其他前處理方法依序使用,例如超音波、鹼性過氧化氫(H2O2)與臭氧,在溫和條件下(80-180 oC與45-120分鐘)在批次式反應器中前處理木質纖維素生物質。
我們提出一種嶄新的前處理方法,依序使用scCO2與鹼性H2O2在溫和條件下前處理甘蔗渣,此方法產率相較單獨使用scCO2、超音波或H2O2以及串聯scCO2與超音波的前處理方法好上兩倍。使用scCO2前處理可得到高含量的纖維素與半纖維素,但仍有不溶於酸的木質素。使用超音波或H2O2前處理可部分解聚木質素,然而無法將纖維素從木質素中分離。將酵素水解後的液體產物以HPLC分析以及將固體殘渣以SEM觀察,結果顯示出scCO2與H2O2的強大協同性。
當甘蔗渣依序使用scCO2與臭氧前處理後,葡萄糖回收率由15-20%顯著提升到40-65%。原因可能是scCO2爆破前處理提高了木質纖維素原料的消化率。scCO2爆破前處理在高壓爐中在80-120 oC、CO2 壓力20.6 MPa下反應30分鐘,接著以固定床反應器在室溫下進行臭氧前處理。我們研究兩個主要的變數:scCO2爆破前處理的溫度與臭氧前處理的時間。甘蔗渣在前處理組合後提高了自纖維中獲取纖維素的能力以及酵素水解的效率,使纖維素含量提升與木質素含量下降,值得一提的是糠醛與羥甲基糠醛在前處理中並未偵測到。因此,總括來說結合scCO2爆破前處理與臭氧前處理是一個提昇生物質原料葡萄糖回收率的有效方法。
我們提出一種新的木屑前處理方法,稱為CO2壓縮液態THF溶液前處理,以提高生質乙醇生產時所需的纖維素含量。如果使用最佳化的酵素水解條件,此前處理方法使用THF混溶使用CO2壓縮後的液態酸性溶液可從木屑中得到高達90%的葡萄糖回收率。我們使用CCD找出最佳化的前處理條件,所有因子皆顯著影響葡萄糖回收率。我們建立一個四次多項式模型表示葡萄糖回收率,使用響應曲面法進行多重回歸分析決定最佳化前處理條件。最佳化條件為水:THF=1:2、溫度185 oC、CO2 壓力11.7MPa與前處理時間2小時,得到的葡萄糖回收率為84.1%。實驗驗證最佳化條件與模型預測符合。此前處理方法效率高的原因可歸於非常高的木質素移除,組成分析支持這項假設。接著,經由使高揮發性的THF揮發,幾乎純的木質素產物會沉澱,可回收使用。
另一項研究中,我們使用CCD找出壓縮CO2前處理鳳眼藍後以提高酵素水解葡萄糖回收率的最佳化壓力、溫度與前處理時間,所有因子皆顯著影響葡萄糖回收率。我們建立一個四次多項式模型表示葡萄糖回收率,使用響應曲面法進行多重回歸分析預測並決定最佳化前處理條件。最佳化條件為溫度140 oC、CO2 壓力5.8MPa與前處理時間90分鐘,得到的葡萄糖回收率為96.5%。實驗驗證最佳化條件與模型預測符合。得到的結果顯示壓縮CO2前處理可以避免產生抑制發酵的物質,例如5-羥甲基糠醛,並構成提升酵素水解鳳眼蘭效率的方法。接著使用實驗數據中得到的所有必需輸入值進行簡化的生命週期評估,結果顯示可以得到明顯的化石燃料消耗下降以及減少對人類健康與環境的衝擊。
Lignocellulosic biomass can be utilized to produce ethanol, a promising alternative energy source for the limited crude oil. There are mainly two processes involved in the conversion: hydrolysis of cellulose in the lignocellulosic biomass to produce reducing sugars, and fermentation of the sugars to ethanol. The cost of ethanol production from lignocellulosic material is relatively high based on current technologies, and the main challenges are the low yield and high cost of the hydrolysis process. Considerable research efforts have been made to improve the hydrolysis of lignocellulosic materials. Pretreatment of lignocellulosic materials to remove lignin and hemicellulose can significantly enhance the hydrolysis of cellulose. However, physical and chemical barriers caused by the close association of the main components of lignocellulosic biomass, hinder the hydrolysis of cellulose and hemicellulose and lignin fraction thus, different pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis and fermentation steps. The present work aims at exploring new pretreatment approaches using sequential combinations of supercritical CO2 (scCO2) and other pretreatment means such as ultrasound, alkaline hydrogen peroxide and ozonolysis at mild conditions (80-180 oC and 45-120 min) to pretreat lignocellulosic biomass in a batch reactor.
An innovative method for pretreatment of sugarcane bagasse using sequential combination of supercritical CO2 (scCO2) and alkaline hydrogen peroxide (H2O2) at mild conditions was proposed. Yields of cellulose was found to be two times superior when compared to the individual pretreatment with scCO2, ultrasound, or H2O2 and the sequential combination of scCO2 and ultrasound. Pretreatment with scCO2 obtained high amounts of cellulose and hemicellulose but also acid-insoluble lignin. Pretreatment with ultrasound or H2O2 could partly depolymerize lignin, however, could not separate cellulose from lignin. HPLC analysis of liquid products via enzymatic hydrolysis and characterization of solid residues by SEM revealed strong synergetic effects in the sequential combination of scCO2 and H2O2.
A significant increase in glucose recovery from 15-20 to 40-65% was obtained when sugarcane bagasse was sequentially pretreated using scCO2 followed by ozonolysis. The reason for this can be attributed to an increased lignocellulosic material digestibility by scCO2 explosion pretreatment that was conducted in a high pressure autoclave at 80-120 oC, 20.6 MPa of CO2 pressure and 30 min while the ozonolysis of scCO2-pretreated sugarcane bagasse was carried out in a fixed bed reactor at room temperature. The effects of two major parameters, temperature of scCO2 explosion pretreatment and time for ozonolysis, were studied. An increased access of cellulose to the cellulose fiber and an increased enzymatic hydrolysis led to an increase in the cellulose fraction while decreasing the lignin content for the combined pretreatment of sugarcane bagasse. It is also noteworthy that furfural and hydroxymethyl furfural were not detected of the pretreatments. Thus it can be concluded that the sequential pretreatment of sugarcane bagasse using scCO2 explosion followed by ozonolysis is an efficient way to improve glucose recovery from biomass feedstocks.
A new pretreatment for wood dust called CO2 compressed aqueous THF solution pretreatment was proposed to enhance cellulose in the subsequent process of bioethanol production. This pretreatment approach employed THF miscible with aqueous acidity solution by CO2-compressed to obtain up 90% glucose recovery from wood dust if coupled with enzymatic hydrolysis at the optimum condition. A central composite design was used to optimize the pretreatment conditions. All factors were found to affect glucose recovery significantly. A quadratic polynomial equation was modelled for glucose recovery by multiple regression analysis using response surface methodology to determine the optimum pretreatment condition. A glucose recovery of 84.1% for the optimum condition at a water:THF ratio of 1:2, a temperature of 190 oC, a CO2 pressure of 11.7 MPa and a pretreated time of 2 h. Experimental verification of the optimum conditions showed glucose recovery well within the estimated value of the model. High efficiency of this pretreatment approach could be attributed to a very high lignin removal which is supported by compositional analysis. Subsequently, nearly pure lignin product can be precipitated by evaporation of volatile THF for recovery and recycling.
The other work optimized the effects of pressure, temperature, and pretreated time in the pressurized CO2 pretreatment of water hyacinth to enhance glucose recovery following enzymatic hydrolysis using a central composite design. All of the factors were found to significantly affect glucose recovery. A quadratic polynomial equation was modelled to predict and determine the optimum conditions for glucose recovery by multiple regression analysis using response surface methodology. The optimum conditions for the pretreatment of water hyacinth were obtained at CO2 pressure of 5.8 MPa and 140 oC for 90 min, yielding a glucose recovery of 96.5 %. Experimental verification of the optimum conditions showed that the glucose recovery was well within the predicted value. The obtained results indicate that the pressurized CO2 pretreatment avoids formation of the inhibitors for fermentation such as furfural and 5-hydroxymethylfurfural and constitutes an efficient way to improve enzymatic hydrolysis from water hyacinth. Following a simplified life cycle assessment using all of the required input values from our experimental data, it was demonstrated that a significant fossil fuel reduction, as well as less human health and ecosystem impacts, could be achieved.
Abdel-Fattah, A.F., Abdel-Naby, M. a., 2012. Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydr. Polym. 87, 2109–2113.
Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B., 2011. Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675–685.
Alinia, R., Zabihi, S., Esmaeilzadeh, F., Kalajahi, J.F., 2010. Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosyst. Eng. 107, 61–66.
Asghar, U., Irfan, M., Iram, M., Huma, Z., Nelofer, R., Nadeem, M., Syed, Q., 2015. Effect of alkaline pretreatment on delignification of wheat straw. Nat. Prod. Res. Former. Nat. Prod. Lett. 29, 125–131.
Aswathy, U.S., Sukumaran, R.K., Devi, G.L., Rajasree, K.P., Singhania, R.R., Pandey, A., 2010. Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresour. Technol. 101, 925–930.
Avgerinos, G.C., Wang, D.I.C., 1983. Selective solvent delignification for fermentation enhancement. Biotechnol. Bioeng. 25, 67–83.
Ayeni, A.O., Hymore, F.K., Mudliar, S.N., Deshmukh, S.C., Satpute, D.B., Omoleye, J.A., Pandey, R.A., 2013. Hydrogen peroxide and lime based oxidative pretreatment of wood waste to enhance enzymatic hydrolysis for a biorefinery: Process parameters optimization using response surface methodology. Fuel 106, 187–194.
Bai, Y., Luo, L., van der Voet, E., 2010. Life cycle assessment of switchgrass-derived ethanol as transport fuel. Int. J. Life Cycle Assess. 15, 468–477.
Bellido, C., González-Benito, G., Coca, M., Lucas, S., García-Cubero, M.T., 2013. Influence of aeration on bioethanol production from ozonized wheat straw hydrolysates using Pichia stipitis. Bioresour. Technol. 133, 51–58.
Benazzi, T., Calgaroto, S., Astolfi, V., Dalla Rosa, C., Oliveira, J.V., Mazutti, M.A., 2013. Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme Microb. Technol. 52, 247–250.
Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A., 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977.
Binod, P., Kuttiraja, M., Archana, M., Janu, K.U., Sindhu, R., Sukumaran, R.K., Pandey, A., 2012. High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel 92, 340–345.
Brehmer, B., Sanders, J., 2009. Implementing an energetic life cycle analysis to prove the benefits of lignocellulosic feedstocks with protein separation for the chemical industry from the existing bioethanol industry. Biotechnol. Bioeng. 102, 767–777.
Cai, C.M., Nagane, N., Kumar, R., Wyman, C.E., 2014. Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chem. 16, 3819–3829.
Cai, C.M., Zhang, T., Kumar, R., Wyman, C.E., 2013. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem. 15, 3140–3145.
Carroll, A., Somerville, C., 2009. Cellulosic biofuels. Annu. Rev. Plant Biol. 60, 165–182.
Carvalheiro, F., Duarte, L.C., Gírio, F.M., 2008. Hemicellulose biorefineries : a review on biomass pretreatments. J. Sci. Ind. Res. (India). 67, 849–864.
Cha, Y.-L., Yang, J., Ahn, J.-W., Moon, Y.-H., Yoon, Y.-M., Yu, G.-D., An, G.H., Choi, I.-H., 2014. The optimized CO2-added ammonia explosion pretreatment for bioethanol production from rice straw. Bioprocess Biosyst. Eng. 37, 1907–1915.
Cha, Y.-L., Yang, J., Park, Y., An, G.H., Ahn, J.-W., Moon, Y.-H., Yoon, Y.-M., Yu, G.-D., Choi, I.-H., 2015. Continuous alkaline pretreatment of Miscanthus sacchariflorus using a bench-scale single screw reactor. Bioresour. Technol. 181, 338–344.
Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X., Saddler, J.N., 2007. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv. Biochem. Eng. Biotechnol. 108, 67–93.
Chang, V.B., Holtzapple, M.T., 2000. Affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84-86, 5–37.
Chen, W.-H., Pen, B.-L., Yu, C.-T., Hwang, W.-S., 2011. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresour. Technol. 102, 2916–2924.
Cherubini, F., Ulgiati, S., 2010. Crop residues as raw materials for biorefinery systems - A LCA case study. Appl. Energy 87, 47–57.
Chiaramonti, D., Prussi, M., Ferrero, S., Oriani, L., Ottonello, P., Torre, P., Cherchi, F., 2012. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and Bioenergy 46, 25–35.
Craft, C., Megonigal, P., Broome, S., Stevenson, J., Freese, R., Cornell, J., Zheng, L., Sacco, J., 2003. The pace of ecosystem development of constructed Spartina Alterniflora marshes. Ecol. Appl. 13, 1417–1432.
Dodds, D.R., Gross, R.A., 2007. Chemicals from biomass. Science (80). 318, 1250–1251.
Doka, G., 2003. Life cycle inventories of waste treatment services. ecoinvent repory No. 13. Dübendorf.
Draude, K.M., Kurniawan, C.B., Du, S.J.B., 2001. Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour. Technol. 79, 113–120.
Easson, M.W., Condon, B., Dien, B.S., Iten, L., Slopek, R., Yoshioka-Tarver, M., Lambert, A., Smith, J., 2011. The application of ultrasound in the enzymatic hydrolysis of switchgrass. Appl. Biochem. Biotechnol. 165, 1322–1331.
Filson, P.B., Dawson-Andoh, B.E., 2009. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour. Technol. 100, 2259–2264.
Frischknecht, R., Jungbluth, N., Althaus, H.J., Doka, G., Dones, R., Heck, T., Hellweg, S., Hsichier, R., Nemecek, T., Rebitzer, G., Spielmann, M., Wernet, G., 2007. Overview and methodology (ecoinvent report No. 1). Dübendorf.
Ganguly, A., Chatterjee, P.K., Dey, A., 2012. Studies on ethanol production from water hyacinth—A review. Renew. Sustain. Energy Rev. 16, 966–972.
Gao, M., Xu, F., Li, S., Ji, X., Chen, S., Zhang, D., 2010. Effect of scCO2 pretreatment in increasing rice straw biomass conversion. Biosyst. Eng. 106, 470–475.
Gao, Y., Xu, J., Zhang, Y., Yu, Q., Yuan, Z., Liu, Y., 2013. Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Bioresour. Technol. 144, 396–400.
García-Cubero, M. a T., González-Benito, G., Indacoechea, I., Coca, M., Bolado, S., 2009. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour. Technol. 100, 1608–1613.
García-Cubero, M.T., Palacín, L.G., González-Benito, G., Bolado, S., Lucas, S., Coca, M., 2012. An analysis of lignin removal in a fixed bed reactor by reaction of cereal straws with ozone. Bioresour. Technol. 107, 229–234.
Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R., 2010. Hemicelluloses for fuel ethanol: A review. Bioresour. Technol. 101, 4775–4800.
Goedkoop, M., Schryver, A.D., Oele, M., Durksz, S., Roest, D.D., 2010. Introduction to LCA with SimaPro 7.
Goedkoop, M., Schryver, A.D., Oele, M., Vieira, M., 2008. SimaPro database manual methods library.
González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P., 2012. Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour. Technol. 110, 610–616.
Gould, J.M., 1985. Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotechnol. Bioeng. 27, 217–387.
Gowlett, J.A.J., 2006. The early settlement of northern Europe : Fire history in the context of climate change and the social brain. Comptes Rendus Palevol 5, 299–310.
Groom, M.J., Gray, E.M., Townsend, P. A, 2008. Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv. Biol. 22, 602–609.
Gurgel, L.V.A., Pimenta, M.T.B., Curvelo, A.A.D.S., 2014. Enhancing liquid hot water (LHW) pretreatment of sugarcane bagasse by high pressure carbon dioxide (HP-CO2). Ind. Crops Prod. 57, 141–149.
Hendriks, A.T.W.M., Zeeman, G., 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18.
Herrero, M., Mendiola, J.A., Cifuentes, A., Ibáñez, E., 2010. Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 1217, 2495–2511.
Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D., 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science (80). 315, 804–807.
Hongdan, Z., Shaohua, X., Shubin, W., 2013. Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour. Technol. 143, 391–396.
Hsu, T.A., 1996. Pretreatment of Biomass, in: Wyman, C.E. (Ed.), Handbook on Bioethanol, Production and Utilization. pp. 179–212.
Inoue, H., Yano, S., Endo, T., Sakaki, T., Sawayama, S., 2008. Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnol. Biofuels 1, 2.
Jeoh, T., Ishizawa, C.I., Davis, M.F., Himmel, M.E., Adney, W.S., Johnson, D.K., 2007. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98, 112–122.
Jin, S., Chen, H., 2006. Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochem. Eng. J. 30, 225–230.
Kaufman, A.S., Meier, P.J., Sinistore, J.C., Reinemann, D.J., 2010. Applying life-cycle assessment to low carbon fuel standards—How allocation choices influence carbon intensity for renewable transportation fuels. Energy Policy 38, 5229–5241.
Khanal, S.K., 2009. Bioenergy generation from residues of biofuel industries, in: Khanal, S.K. (Ed.), Anaerobic Biotechnology for Bioenergy Production: Principles and Applications. Wiley-Blackwell, Oxford, UK, pp. 161–188.
Kim, K.H., Hong, J., 2001. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour. Technol. 77, 139–144.
Kim, T.H., Lee, Y.Y., 2006. Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresour. Technol. 97, 224–232.
Kumar, D., Murthy, G.S., 2011. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol. Biofuels 4, 27.
Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729.
Kumar, R., Wyman, C.E., 2009. Effects of Cellulase and Xylanase Enzymes on the Deconstruction of Solids from Pretreatment of Poplar by Leading Technologies. Biotechnol. Prog. 25, 302–313.
Lavigne, A., Powers, S.E., 2007. Evaluating fuel ethanol feedstocks from energy policy perspectives: A comparative energy assessment of corn and corn stover. Energy Policy 35, 5918–5930.
Li, C., Cheng, G., Balan, V., Kent, M.S., Ong, M., Chundawat, S.P.S., Sousa, L. daCosta, Melnichenko, Y.B., Dale, B.E., Simmons, B.A., Singh, S., 2011. Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour. Technol. 102, 6928–6936.
Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., Chen, J., 2010. Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Appl. Biochem. Biotechnol. 162, 1872–1880.
Liu, Y., Luo, P., Xu, Q., Wang, E., Yin, J., 2014. Investigation of the effect of supercritical carbon dioxide pretreatment on reducing sugar yield of lignocellulose hydrolysis. Cellul. Chem. Technol. 48, 89–95.
Lu, X., Zhang, Y., Angelidaki, I., 2009. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. Bioresour. Technol. 100, 3048–3053.
Luo, L., van der Voet, E., Huppes, G., 2009a. An energy analysis of ethanol from cellulosic feedstock - Corn stover. Renew. Sustain. Energy Rev. 13, 2003–2011.
Luo, L., van der Voet, E., Huppes, G., Udo de Haes, H.A., 2009b. Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int. J. Life Cycle Assess. 14, 529–539.
Luterbacher, J.S., Tester, J.W., Walker, L.P., 2012. Two-temperature stage biphasic CO2-H2O pretreatment of lignocellulosic biomass at high solid loadings. Biotechnol. Bioeng. 109, 1499–1507.
Lynd, L.R., Cushman, J.H., Nichols, R.J., Wyman, C.E., 1991. Fuel ethanol from cellulosic biomass ethanol as a fuel. Science (80). 251, 1318–1323.
Lynd, L.R., Weimer, P.J., Zyl, W.H. Van, Pretorius, I.S., 2002. Microbial cellulose utilization : Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577.
Lynd, L.R., Wyman, C., Gerngross, T., 1999. Biocommodity engineering. Biotechnol. Prog. 15, 777–793.
MacLean, H.L., Spatari, S., 2009. The contribution of enzymes and process chemicals to the life cycle of ethanol. Environ. Res. Lett. 4, 014001.
Martín, C., Klinke, H.B., Thomsen, A.B., 2007. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb. Technol. 40, 426–432.
Martin-Sampedro, R., Revilla, E., Villar, J.C., Eugenio, M.E., 2014. Enhancement of enzymatic saccharification of Eucalyptus globulus: Steam explosion versus steam treatment. Bioresour. Technol. 167, 186–191.
McKendry, P., 2002. Energy production from biomass (Part 1): Overview of biomass. Bioresour. Technol. 83, 37–46.
McMillan, J.D., 1994. Pretreatment of lignocellulosic biomass, in: Himmel, M.E., Baker, J.O., Overend, R.P. (Eds.), Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC., pp. 292–324.
Menon, V., Rao, M., 2012. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550.
Mes-Hartree, M., Dale, B.E., Craig, W.K., 1988. Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose. Appl. Microbiol. Biotechnol. 29, 462–468.
Meyssami, B., Balaban, M.O., Teixeira, A.A., 1992. Prediction of pH in model systems pressurized with carbon dioxide. Biotechnol. Prog. 8, 149–154.
Mishima, D., Kuniki, M., Sei, K., Soda, S., Ike, M., Fujita, M., 2008. Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour. Technol. 99, 2495–2500.
Montgomery, D.C., 2012. Design and Analysis of Experiments. Wiley-Blackwell.
Morais, A.R.C., Da Costa Lopes, A.M., Bogel-Łukasik, R., 2015. Carbon dioxide in biomass processing: Contributions to the green biorefinery concept. Chem. Rev. 115, 3–27.
Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., Ladisch, M.R., 2005a. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96, 1986–1993.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005b. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686.
Narayanaswamy, N., Faik, A., Goetz, D.J., Gu, T., 2011. Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour. Technol. 102, 6995–7000.
Neely, W.C., 1984. Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol. Bioeng. 26, 59–65.
Neupane, B., Halog, A., Dhungel, S., 2011. Attributional life cycle assessment of woodchips for bioethanol production. J. Clean. Prod. 19, 733–741.
Nguyen, Q.A., Tucker, M.P., Keller, F.A., Eddy, F.P., 2000. Two-stage dilute-acid pretreatment of softwoods. Appl. Biochem. Biotechnol. 84-86, 561–576.
Nguyen, T.L.T., Gheewala, S.H., 2008. Life cycle assessment of fuel ethanol from cane molasses in Thailand. Int. J. Life Cycle Assess. 13, 301–311.
Nguyen, T.Y., Cai, C.M., Kumar, R., Wyman, C.E., 2015. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem 1716–1725.
Ninomiya, K., Kamide, K., Takahashi, K., Shimizu, N., 2012. Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. Bioresour. Technol. 103, 259–265.
Oliveira, F.M.V., Pinheiro, I.O., Souto-Maior, A.M., Martin, C., Gonçalves, A.R., Rocha, G.J.M., 2013. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour. Technol. 130, 168–173.
Ou, X., Zhang, X., Chang, S., Guo, Q., 2009. Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People’s Republic of China. Appl. Energy 86, S197–S208.
Paljevac, M., Primožič, M., Habulin, M., Novak, Z., Knez, Ž., 2007. Hydrolysis of carboxymethyl cellulose catalyzed by cellulase immobilized on silica gels at low and high pressures. J. Supercrit. Fluids 43, 74–80.
Pandey, A., Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J., 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101, 4851–4861.
Pasquini, D., Pimenta, M.T.B., Ferreira, L.H., Curvelo, A.A.S., 2005. Sugar cane bagasse pulping using supercritical CO2 associated with co-solvent 1-butanol/water. J. Supercrit. Fluids 34, 125–131.
Peng, F., Peng, P., Xu, F., Sun, R.-C., 2012. Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 30, 879–903.
Phan, D.T., Tan, C.S., 2014. Innovative pretreatment of sugarcane bagasse using supercritical CO2 followed by alkaline hydrogen peroxide. Bioresour. Technol. 167, 192–197.
Pienkos, P.T., Zhang, M., 2009. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16, 743–762.
Pinjari, D.V., Pandit, A.B., 2010. Cavitation milling of natural cellulose to nanofibrils. Ultrason. Sonochem. 17, 845–852.
Quesafa, J., Rubio, M., Gomez, D., 1999. Ozonation of lignin rich solid fractions from corn stalks. J. Wood Chem. Technol. 19, 115–137.
Ragnar, M., Eriksson, T., Reitberger, T., 1999. Radical formation in ozone reactions with lignin and carbohydrate model compounds. Holzforschung 53, 292–298.
Ravindran, R., Jaiswal, A.K., 2015. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresour. Technol. 199, 92–102.
Sánchez, O.J., Cardona, C.A., 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99, 5270–5295.
Sanderson, K., 2011. Lignocellulose. A chewy problem. Nature 474, S12–S14.
Schacht, C., Zetzl, C., Brunner, G., 2008. From plant materials to ethanol by means of supercritical fluid technology. J. Supercrit. Fluids 46, 299–321.
Schmer, M.R., Vogel, K.P., Mitchell, R.B., Perrin, R.K., 2008. Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. 105, 464–469.
Schmidt, J.H., 2008. System delimitation in agricultural consequential LCA. Int. J. Life Cycle Assess. 13, 350–364.
Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., Yu, T.-H., 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240.
Sharma, S., Kumar, R., Gaur, R., Agrawal, R., Gupta, R.P., Tuli, D.K., Das, B., 2015. Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw. Bioresour. Technol. 175, 350–357.
Somerville, C., 2006. The billion-ton biofuels vision. Science (80). 312, 1277.
Spatari, S., Bagley, D.M., MacLean, H.L., 2010. Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. Bioresour. Technol. 101, 654–667.
Spatari, S., Zhang, Y., MacLean, H.L., 2005. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environ. Sci. Technol. 39, 9750–9758.
Srinivasan, N., Ju, L.-K., 2012. Statistical optimization of operating conditions for supercritical carbon dioxide-based pretreatment of guayule bagasse. Biomass and Bioenergy 47, 451–458.
Stichnothe, H., Azapagic, A., 2009. Bioethanol from waste: Life cycle estimation of the greenhouse gas saving potential. Resour. Conserv. Recycl. 53, 624–630.
Su, Z., Bu, L., Zhao, D., Sun, R., Jiang, J., 2012. Processing of Lespedeza stalks by pretreatment with low severity steam and post-treatment with alkaline peroxide. Ind. Crops Prod. 36, 1–8.
Subhedar, P.B., Gogate, P.R., 2014. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrason. Sonochem. 21, 216–225.
Sun, Y., Cheng, J., 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11.
Swana, J., Yang, Y., Behnam, M., Thompson, R., 2011. An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresour. Technol. 102, 2112–2117.
Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D., 2002. Dissolution of cellose with Ionic liquids. J. Am. Chem. Soc. 124, 4974–4975.
Taherzadeh, M.J., Karimi, K., 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651.
Tock, R.W., Richardson, C.R., Gancarz, T., Chang, J., Owsley, M.R., 1982. Ruminant rations from mesquite biomass pretreated with water and ozone. Ind. Eng. Chem. Res. 21, 101–106.
Travaini, R., Otero, M.D.M., Coca, M., Da-Silva, R., Bolado, S., 2013. Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour. Technol. 133, 332–339.
van Walsum, G.P., 2001. Severity function describing the hydrolysis of xylan using carbonic acid. Appl. Biochem. Biotechnol. 91-93, 317–329.
van Walsum, G.P., Shi, H., 2004. Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresour. Technol. 93, 217–226.
Velásquez-Arredondo, H.I., Ruiz-Colorado, A.A., De Oliveira junior, S., 2010. Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis. Energy 35, 3081–3087.
Velmurugan, R., Muthukumar, K., 2012. Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresour. Technol. 112, 293–299.
Vidal, P.F., Molinier, J., 1988. Ozonolysis of lignin - Improvement of in vitro digestibility of poplar sawdust. Biomass 16, 1–17.
Wang, G.S., Lee, J.-W., Zhu, J.Y., Jeffries, T.W., 2011. Dilute acid pretreatment of corncob for efficient sugar production. Appl. Biochem. Biotechnol. 163, 658–668.
Weingarten, R., Cho, J., Conner, Jr., W.C., Huber, G.W., 2010. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chem. 12, 1423.
Xu, L., Tschirner, U., 2012. Peracetic acid pretreatment of Alfalfa stem and aspen biomass. BioResources 7, 203–216.
Yang, B., Wyman, C.E., 2008. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Biorefining 2, 26–40.
Yin, J., Hao, L., Yu, W., Wang, E., Zhao, M., Xu, Q., Liu, Y., 2014. Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment. Chinese J. Catal. 35, 763–769.
Yokota, S., Iizuka, K., Ishiguri, F., Abe, Z., Yoshizawa, N., 2006. Ozone-dioxane delignification from the cell walls of Japanese cypress (Chamaecyparis obtusa Endl.). J. Mater. Cycles Waste Manag. 8, 140–144.
Yu, Q., Zhuang, X., Lv, S., He, M., Zhang, Y., Yuan, Z., Qi, W., Wang, Q., Wang, W., Tan, X., 2013. Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresour. Technol. 129, 592–598.
Yu, Q., Zhuang, X., Wang, Q., Qi, W., Tan, X., Yuan, Z., 2012. Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Bioresour. Technol. 116, 220–225.
Yu, Z., Jameel, H., Chang, H., Park, S., 2011. The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour. Technol. 102, 9083–9089.
Yunus, R., Salleh, S.F., Abdullah, N., Biak, D.R.A., 2010. Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour. Technol. 101, 9792–9796.
Zamboni, A., Murphy, R.J., Woods, J., Bezzo, F., Shah, N., 2011. Biofuels carbon footprints: Whole-systems optimisation for GHG emissions reduction. Bioresour. Technol. 102, 7457–7465.
Zhang, Q., Benoit, M., De Oliveira Vigier, K., Barrault, J., Jégou, G., Philippe, M., Jérôme, F., 2013. Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem. 15, 963–969.
Zhang, Y.P., Lynd, L.R., 2006. A functionally based model for hydrolysis of cellulose by fungal Cellulase. Biotechnol. Bioeng. 94, 888–898.
Zhao, C., Ding, W., Chen, F., Cheng, C., Shao, Q., 2014. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour. Technol. 155, 34–40.
Zhao, X., Zhang, L., Liu, D., 2012. Biomass recalcitrance . Part I : the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod. Biorefining 6, 465–482.
Zheng, Y., Lin, H., Tsao, G., 1998. Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol. Prog. 14, 890–896.
Zheng, Y., Lin, H.-M., Wen, J., Cao, N., Yu, X., Tsao, G.T., 1995. Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol. Lett. 17, 845–850.
Zhu, J.Y., Pan, X., Zalesny, R.S., 2010. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl. Microbiol. Biotechnol. 87, 847–857.
Zhu, J.Y., Pan, X.J., 2010. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour. Technol. 101, 4992–5002.