簡易檢索 / 詳目顯示

研究生: 林家正
Lin, Chia-Cheng
論文名稱: 矽奈米線之X光非對稱表面繞射研究
Asymmetric Surface X-Ray Diffraction of Nanometer Silicon Lines
指導教授: 張石麟
Chang, Shih-Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 115
中文關鍵詞: 動力繞射理論表面繞射非對稱干涉繞射波導
外文關鍵詞: Dynamical Theory of X-Ray Diffraction, Nanometer Silicon Lines, single-slit diffraction, multiple-mode interference
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽奈米線之X光非對稱表面繞射研究

    國立清華大學物理系碩士學位論文
    題目:矽奈米線之X光非對稱表面繞射研究
    學生:林家正
    指導教授:張石麟

    摘要

      本文嘗試於厚度為675μm,表面晶向為[ 0 0 1 ]之6吋矽單晶表面蝕刻出長4mm,高1μm,寬350nm至20um之奈米級線型結構,並於其矽單晶上下被覆厚 150nm之金薄膜。並以光子能量為8.8785kev,由(1 1 3)原子面形成之表面繞射光入射前述之覆金矽奈米線結構。
      
      實驗上,我們證實了X光之能夠被矽奈米線之左右金薄膜邊界來回反射,使X光只能行走於矽奈米線中,顯示此種結構對於X光具有波導效應的潛力。可惜X光於矽中行走時,由於矽對於X光之吸收率過大因此(1 1 3)繞射光之強度有過於微弱之缺點。
      
      另外,當貼近於晶體表面的(1 1 3)繞射光於矽奈米線之結構穿出時,實驗上可以觀察到其繞射峰之波形具有不對稱性。利用直角座標之動力繞射理論(Stetsko & Chang ,1997)分析電場於矽晶體內部的行為模式後,推測此不對稱性乃肇因於不同模式之繞射光於晶體表面之電場互相疊加和相互干涉的結果。
      
      不僅如此,於實驗中還可觀測到X光繞射峰之峰型具有類似於光學中之單狹縫繞射光的週期性震盪現象。承上之分析,亦可推論出其原因乃為晶體中洽有一模式之繞射光,因其隨晶體深度之吸收效應較不明顯,以至於波長約為1之X繞射光能於高1μm之奈米線側面形成單狹縫繞射現象。


    ABSTRACT
    Asymmetric Surface X-Ray Diffraction of Nanometer Silicon Lines

    Chia-Cheng Lin, Advisor : Professor Shih-Lin Chang
    Master of Physics,
    National Tsing Hua University, Taiwan, Republic of China

    This work aims to develop a kind of nanometer silicon lines which allow wide-angle incident X-rays to propagate in a special direction, say the [113] of Si, the so-called waveguiding effect. Moreover, this nanometer silicon line can be used to exhibit the single-slit diffraction phenomenon and multiple-mode interference of the ( 1 1 3 ) dynamical diffraction.

    Nanometer silicon lines about 1μm high, 4mm long along [110], and 350nm to 20um wide were prepared by the Nano Device Laboratory (NDL) on a 4 inches silicon [001] waver. The lines were then covered by 150nm thick gold film. The ( 113 ) diffraction beam propagates along the surface of the waver at the photon energy 8.8785kev. The propagation direction is also along the [110].

    The diffraction experiments show that X-rays can be guided within the nanometer silicon lines, but with a very low guiding efficiency due to crystal absorption. Most importantly, the single-slit diffraction phenomenon and multiple-mode interference of the (113) reflection are clearly observed. The dynamical theory of X-ray diffraction in the Cartesian coordinate representation is employed to analyze the X-ray wavefield in the silicon crystal and to account for the interference phenomenon.

    目錄 第一章 導言 ....................................1 第二章 理論原理 ...............................2   2.1節 布拉格繞射定律 ........................2 2.2節 艾瓦建構...............................3 2.3節 動力繞射理論...........................5 2.3.1節 基本波場方程式........................5 2.3.2節 直角座標系下的基本波場方程式 ............9 第三章 奈米線設計與製作.....................16 3.1節 奈米線之幾何設計原理..................16 3.2節 奈米線之波導原理......................19 3.3節 奈米線之樣品製作......................21 3.4節 實驗步驟..............................23 第四章 實驗數據與分析 .......................29 4.1節 實驗數據與討論........................29 4.1.1節 矽三層結構(1 1 3)繞射光基本性質量測...29 4.1.2節 三層結構奈米線波導效應之確認 ..........32 4.1.3節 繞射光之單狹縫繞射與多模式干涉效應 .....44 4.2節 理論模擬原理..........................49 4.2.1節 矽晶體內部波向量之計算................50 4.2.2節 金矽金三層結構內部波向量與電場之計算 ...52 4.2.3節 晶體內電場傳遞路徑及惠更斯-菲涅耳原理 ..58 4.3節 理論模擬結果..........................62 4.3.1節 純矽晶體之(1 1 3)繞射光基本性質模擬 ..62 4.3.2節 繞射峰之單狹縫繞射與多模式干涉現象模擬 .65 第五章 結論與展望 ............................75 附錄.........................................77 附錄A 淺探偏差角對繞射峰峰型之影響........77 附錄B 動力繞射程式基本架構................82 附錄C X光干涉與繞射行為程式.............100 參考文獻 ...................................114

    參考文獻

    [1] Jarre, A. Seeger ,J. Ollinger ,C. and Fuhse ,C.(2007) X-ray waveguide nanostructures: Design, fabrication, and characterization, J. Appl. Phys. 101, 054306 (6 P.)

    [2] Stetsko, Y. P. & Chang, S.-L. (1997) An Algorithm for Solving Multiple-Wave Dynamical X-ray Diffraction Equations, Acta Cryst. A53, 28-34

    [3] Ashcroft , N. W., Mermin N. D. (1976), Solid State Physics , P 96~P101, Cornell University : Brooks/Cole

    [4] Chang, S.-L. (2004), X-Ray Multiple-Wave Diffraction Theory and Application, P 90-93 , Berlin : Springer Verlag

    [5] Souvorov, A. , Ishikawa,T. , Nikulin, A. Y. , Stetsko, Y. P. , Chang, S.-L. & Zaumseil, P. (2004). X-ray multiple diffraction from crystalline multilayers: Application to a 90° Bragg reflection , Phys .Rev. B 70, 224109 (9 P.)

    [6] Marder, M.P. (2000), Condensed Matter Physics , The University of Texas at Austin : Wiley-Interscience

    [7] http://henke.lbl.gov/optical_constants/pert_form.html

    [8] Hesht, E. (2002), Optics(4th Ed.),Ch. 4, Adelphi University : Addison Wesley

    [9] Hesht, E. (2002), Optics(4th Ed.),Ch. 10, Adelphi University : Addison Wesley

    [10] http://www.spring8.or.jp/wkg/BL12B2/instrument/lang-en/INS-0000000569/instrument_summary_view

    [11] Jackson, J.D. (1999), Classical Electrodynamics(3rd Ed.), University of Califormia,Berkeley : Wiley

    [12] 黃志仁(2009),X光廣角入射波導管之波導干涉,國立清華大學碩士論文

    [13] 邱茂森(2008),X光共振腔之24光動力繞射計算,國立清華大學博士論文

    [14] 張石麟(2008),X光繞射特論講義,國立清華大學物理學系

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE