研究生: |
林凡生 Lin, Fan-Sheng |
---|---|
論文名稱: |
探討虛擬實境融入動手操作導向課程對學生「物質受熱變化」學習成就及概念理解的影響 The effects of using virtual reality within a physical manipulatives-oriented curriculum on students’ science achievement and conceptual understanding of heat and changing states of matter |
指導教授: |
王姿陵
Wang, Tzu-Ling 唐文華 Tarng, Wern-Huar |
口試委員: |
盧玉玲
Lu, Yu-Ling 袁媛 Yuan, Yuan |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 動手做實驗 、虛擬實境 、物質受熱 、學習成就 、概念理解 |
外文關鍵詞: | physical manipulatives, virtual reality, heat and changing states of matter, science achievement, conceptual understanding |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為探討虛擬實境融入動手操作導向課程,對國小六年級學生學習成就與概念理解的影響。
本研究共分四組實驗組,實驗組A(動手做實驗→動手做實驗)、實驗組B(虛擬實驗→虛擬實驗)、實驗組C(動手做實驗→虛擬實驗)以及實驗組D(虛擬實驗→動手做實驗)。參與的樣本來自一所桃園市都會區公立國小六年級八個班級的學生,共205人。研究工具包含物質受熱成就測驗和物質受熱二階診斷測驗。資料分析方法包含:敘述統計(descriptive statistics)、單因子共變數分析(one-way ancova)以及卡方檢定(chi-square)。
本研究的結果如下:
一、先動手做實驗再虛擬實驗組的學習成就優於單獨動手做實驗組以及先虛擬實驗再動
手做實驗組。
二、在「形態變化」活動,虛擬實驗組和動手做實驗組的學習成就相似;在「體積變化」
活動,虛擬實驗組的學習成就優於動手做實驗組。
三、先動手做實驗再虛擬實驗組的概念理解優於單獨動手做實驗組、單獨虛擬實驗組以
及先虛擬實驗再動手做實驗組。
四、在「形態變化」活動,動手做實驗組的概念理解優於虛擬實驗組;在「體積變化」
活動,虛擬實驗組的概念理解優於動手做實驗組。
This major purpose of the study was to investigate the impact of using virtual reality within a physical manipulatives-oriented curriculum on sixth-grade students’ science achievement and conceptual understanding.
This study included four teaching strategies: experimental group A (physical manipulatives alone), experimental group B (virtual manipulatives alone ), experimental group C (physical preceding virtual manipulatives) and experimental group D (virtual preceding physical manipulatives). Eight sixth grade classes were from Taoyuan city metropolitan area including a total of 205 participants. The instruments in this study were the achievement test and the two-tier conceptual test. Data analysis methods included descriptive statistics, one-way ancova and chi-square.
The findings of this study are as follows:
1. Using physical preceding virtual manipulatives enhanced students’ knowledge gains greater than the use of physical manipulatives alone and virtual preceding physical manipulatives.
2. Using physical manipulatives promoted students’ knowledge gains about states of matter equally well as the use of virtual manipulatives. Moreover, using virtual manipulatives enhanced students’ knowledge gains about volume of matter greater than the use of physical manipulatives .
3.Using physical preceding virtual manipulatives promoted students’ conceptual understanding most efficiently compared to the use of physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives.
4. Using physical manipulatives promoted students’ conceptual understanding about states of matter greater than the use of virtual manipulatives. Moreover, using virtual manipulatives promoted students’ conceptual understanding about volume of matter greater than the use of virtual manipulatives.
尹泰霖(2008)。建置以為基礎的互動虛擬實境與教學上之研究-以台南孔廟為例。國立臺南大學數位學習科技學系碩士論文。
方麗勝(2007)。以概念構圖的動態評量探究國小五年級學童”物質與熱”的概念學習。國立台北教育大學課程與教學研究所碩士班論文。
王利元(2017)。探討動手做實驗及虛擬實驗對國小學童在電磁鐵單元的學習成就及概念理解之影響。國立清華大學數理教育研究所碩士論文。
古芝如(2013)。探討靜態、動態、結合動靜態視覺表徵融入教學對國小學生科學學習成就和科學學習動機的影響。國立新竹教育大學數理教育研究所碩士論文。
吳沂木(2004)。資訊科技融入「自然與生活科技」的3D虛擬實境教學之探究-以電與磁教學為例。國立臺南大學自然科學教育研究所碩士論文。
呂念穎(2014)。虛擬校園生態池之建置與研究。國立新竹教育大學人力資源與數位學習科技研究所碩士論文。
李俊銘(2004)。資訊科技融入國小自然領域虛擬實境教學之探究-以蚊子的一生與登革熱防治教學為例。國立臺南大學自然科學教育研究所碩士論文。
李道良(2003)。小六至國三學生對熱與體積變化概念之類型、層次、頻率分佈及認知發展之研究。國立高雄師範大學物理學系碩士班論文。
李權洲(2000)。三至八年級學生對熱膨脹相關概念之研究。國立高雄師範大學物理學系碩士論。
沈潔華(2005)。 以虛擬實境發展國小地球運動課程之設計與研究。國立中央大學網路學習科技研究所碩士論文。
周文忠(2005)。虛擬實境之意義與應用。資訊科學應用期刊,1,121-127。
林于正(2004)。資訊融入地球化學教學之探究-以核飛跡定年法的3D虛擬實境教學為例。國立臺南大學自然科學教育學系碩士班碩士論文。
林秀美(1996)。電腦模擬:一個具有潛力的學習環境。視聽教育雙月刊,38(3),
林佳宏(1999)。不同認知形態的國中生在虛擬實境學習教室中學習歷程之研究。國立高雄師範大學工業科技教育研究所碩士論文。
林冠廷(2009)。動手操作活動教學對六年級自然與生活科技教學之研究-以「物質與熱」單元為例。臺北市立教育大學自然科學系碩士班論文。
姚裕勝(1996)。虛擬實境學習環境之研究:以結構力學之學習為例。國立交通大學傳播研究所碩士論文。
洪炎明(2012)。電子書、2D互動媒體、3D虛擬實境對於生態學習影響之研究。嶺東科技數位媒體設計研究所碩士論文。
高若馨(2016)。星象軟體Stellarium對高一學生在「恆星周日運動」的學習成效研究。中原大學教育研究所碩士論文。
張俊彥(2002)。地球科學「虛擬實境」學習之初探(2/2)。行政院國家科學委員會補助專題研究計畫成果報告。
張新仁(2003)。學習與教學新趨勢。台北市:心理。
陳沛瑩(2003)。以POE教學策略探究國小六年級學童「熱」迷思概念及概念改變之研究。臺北市立師範學院科學教育研究所碩士論文。
陳靖(2002)。資訊融入「九年一貫地球科學」創意教學之研究-以921大地震虛擬實境教學為例。國立臺南師範學院自然科學教育學系碩士班碩士論文。
陳螢棋(2003)。高雄地區小六至國三學生熱與體積變化之迷思概念類型研究。國立高雄師範大學物理學系碩士論文。
黃美羚(2002)。動態媒體之簡介。台大教與學期刊電子報,7,取自http://edtech.ntu.edu.tw/epaper/911010/tips/tips_1.asp。
劉桂林(2016)。虛擬實境在奈米科技教學上的應用-以富勒烯結構分析為例。國立新竹教育大學人力資源與數位學習科技研究所碩士論文。
蔡秉昆(2011)。3D虛擬實境繪本電子書輔助月亮迷思概念課程學習效益之研究。國立臺教育大學數位內容科技學系碩士在職專班碩士論文。
鄭雅軒(2013)。虛擬磁力顯微鏡之設計與教學應用。國立新竹教育大學數位學習科技研究所碩士論文。
盧文貴(1997)。虛擬實境遠距學習系統實作與研究-以機構運動學為例。彰化師範大學工業科技教育研究所碩士論文。
謝佳君(2015)。虛擬實驗設計與教學應用之製備與分析金奈米粒子。國立新竹教育大學人力資源與數位學習科技研究所碩士論文。
謝嘉龍(2006)。以科學寫作診斷國小學童熱學迷思概念之研究。國立嘉義大學國民教育研究所碩士班論文。
Ayman, F. (2017). Comparing the use of virtual and conventional light microscopy in practical sessions: Virtual reality in Tabuk University. Journal of Taibah University Medical Sciences, 12(2), 83-186.
Akpan, J. P., & Andre, T. (2000). Using a computer simulation before dissection to help students learn anatomy. Journal of Computers in Mathematics and Science Teaching, 19(3), 97-313.
Ausburn, L. J., & Ausburn, F. B. (2004). Desktop virtual reality: A powerful new technology for teaching and research in industrial teacher education. Journal of Industrial Teacher Education, 41(4), 1-16.
Byrne, C. (1996). Water on tap: The use of virtual reality as an educational tool (Unpublished doctoral dissertation). University of Washington, Seattle, Washington.
Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology. Hoboken, NJ: Wiley-Interscience.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the cultural of learning. Educational Researcher, 18(1), 32-42.
Bakas, C., & Mikropoulos, T. (2003). Design of virtual environments for the comprehension of planetary phenomena based on students’ ideas. International Journal of Science Education, 25(8), 949-967.
Chini, J. J., Madsen, A., Gire, E., Rebello, N. S., & Puntambekar, S. (2012). Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory. Physical Review Special Topics - Physics Education Research, 8(1), 010113(12).
Clancy, T., Rucklidge, J. J., & Owen, D. (2006). Road-crossing safety in virtual reality: A comparison of adolescents with and without ADHD. Journal of Clinical Child and Adolescent Psychology, 35(2), 203-215.
Dede, C., Salzman, M. C., & Bowen, L. R. (1996). Sciences space: Virtual realities for learning complex and abstract scientific concepts. Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium, 246-252.
Farrokhnia, M. R., & Esmailpour, A. (2010). A study on the impact of real, virtual and comprehensive experimenting on students’ conceptual understanding of DC electric circuits and their skills in undergraduate electricity laboratory. Procedia Social and Behavioral Sciences, 2, 5474-5482.
Gire, E., Carmichael, A., Chini, J. J., Rouinfar, A., Rebello, S., Smith, G., & Puntambekar, S. (2010). The effects of physical and virtual manipulatives on students’ conceptual learning about pulleys. Proceedings of the 9th International Conference of the Learning Sciences 1, 937-944.
Hedberg, J., Harper, B., & Dalgarno, B. (2002). The contribution of 3D environments to conceptual understanding. Proceedings of the 19th Annual Conference of the Australasian Society for Computers in Learning in Tertiary Education 1, 149-158.
Hafner, P., Hafner, V., & Ovtcharova, J. (2013). Teaching methodology for virtual reality practical course in engineering education. Procedia Computer Science, 25, 251-260.
Jamlan, M. (2004). Faculty opinions towards introducinge-learning at the University of Bahrain. International Review of Research in Open and Distance Learning, 5(2), 41-63.
Jang, S., Jonathan, M. V., Robert, W., & John, B. B. (2017). Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Computers & Education, 106, 150-165.
Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24(4), 271-283.
Jaakkola, T., Nurmi, S., & Veermans, K. (2011). A comparison of students’ conceptual understanding of electric circuits in simulation only and simulation-laboratory contexts. Journal of Research in Science Teaching, 48(1), 71-93.
Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44(1), 183-203.
Le, Q. T., Pedro, A., & Park, C. S. (2014). A social virtual reality based construction safety education system for experiential learning. Journal of Intelligent & Robotic Systems, 79(3), 487-506.
Lee, A. L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49-58.
MeLellan, H. (1993). Situated learning in focus: Introduction to special issue. Educational Technology, 33(3) ,5-9.
MeLellan, H. (1996). Situated learning in perspectives. Englewood Cliffs, NJ: Educational Technology Publications.
Merchant, Z., Goetz, E.T., Cifuentes, L., Kwok, O., & Davis, T. J. (2013). Exploring 3-D virtual reality technology for spatial ability and chemistry achievement. Journal of Computer Assisted Learning, 29(6), 579-590.
Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students’ conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21-47.
Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21(1), 133-147.
Rutherford, F. J. (1993). Hands-on: a means to an end. 2061 Today, 3(1), 5.
Sheridan, T. B. (1991). Musing on telepresence and virtual presence. Teleoperators and Virtual Environments,1(1), 120-126.
Sala, N. (2013). Applications of virtual reality technologies in architecture and in engineering. International Journal of Space Technology Management and Innovation, 3(2), 78-88.
Savage, C., Mcgrath, D., Mcintyre, T., Wegener, M., & Williamson, M. (2010). Teaching Physics Using Virtual Reality. AIP Conference Proceedings, 1263(1), 126-129.
Shim, K.C., Park, J.S., Kim, H.S., Kim, J.H., Park, Y. C., & Ryu, H. (2003). Application of virtual reality technology in biology education. Journal of Biological Education, 37(2), 71-74.
Shepherd, D. L., & Renner, J. W. (1982). Students’ understandings and misunderstandings of the states of matter and density changes. School Science and Mathematics, 82(8), 650-665.
Summit, P. M., & Summit, M. J. (1996). Creating cool 3D web worlds with VRML. Foster City: IDG.
Tatli, Z., & Ayas, A. (2013). Effect of a virtual chemistry laboratory on students’ achievement. Journal of Educational Technology & Society, 16(1), 159-170.
Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: a quasi-experimental study. Computers & Education, 54(4), 1078-1088.
Toth, E. E., Morrow, B. L., & Ludvico, L. R. (2009). Designing blended inquiry learning in a laboratory context: A study of incorporating hands-on and virtual laboratories. Innovative Higher Education, 33(5), 333 - 344.
Unlu, Z. K., & Dokme, I. (2011). The effect of combining analogy-based simulation and laboratory activities on Turkish elementary school students’ understanding of simple electric circuits. Turkish Online Journal of Educational Technology, 10(4), 320-329.
Urhahne, D., Nick, S., & Schanze, S. (2009). The effect of three-dimensional simulations on the understanding of chemical structures and their properties. Research in Science Education, 39(4), 495-513
Wang, T. L., & Tseng, Y.K. (2018). The comparative effectiveness of physical, virtual and virtual-physical manipulatives on third-grade students’ science achievement and conceptual understanding of evaporation and condensation. International Journal of Science and Mathematics Education, 16(2), 203-219
Zoller, U. (1990). Students’ misunderstandings and misconceptions in college freshman chemistry (general and organic). Journal of Research in Science Teaching, 27(10), 1053-1065.
Zeltzer, D. (1992). Autonomy, interaction and presence. Presence, 1(1), 127-132.
Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: An effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23(2), 120-132.
Zacharias, Z. C., & Constantinos, P. C. (2008). Comparing the influence of physical and virtual manipulatives in the context of the physics by inquiry curriculum: The case of undergraduate students’ conceptual understanding of heat and temperature. American Association of Physics Teachers, 76(4), 425-430.
Zacharias, Z. C., & de Jong, T. (2014). The effects on students’ conceptual understanding of electric circuits of introducing virtual manipulatives within a physical manipulatives
oriented curriculum. Cognition and Instruction, 32(2), 101-158.
Zacharia, Z. C., Loizou, E., & Papaevripidou, M. (2012). Is physicality an important aspect of learning through science experimentation among kindergarten students? Early Childhood Research Quarterly, 27(3), 447-457.
Zacharias, Z. C., Olympiou, G. (2011) Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21(3), 317-331.
Zacharias, Z. C., Olympiou, G., & Papaevripidou, M. (2008) Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 1021-1035.