簡易檢索 / 詳目顯示

研究生: 徐榮宗
Hsu Rung Tsung
論文名稱: 介電陶瓷系統共燒時的翹曲行為
Key factors controlling camber behavior during the cofiring of bi-layer ceramic dielectric laminates
指導教授: 簡朝和
Jean Jau Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 16
中文關鍵詞: 共燒翹曲應力
外文關鍵詞: cofire, camber, stress
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討兩種不同介電常數的低溫共燒陶瓷系統,發現在共燒過程中,由於兩者收縮速率的差異而造成試片翹曲(camber),其翹曲的程度(曲率)隨著陶瓷層厚度的減少而增大。從曲率變化與溫度的關係,可藉由黏性模型計算在共燒時所產生的不匹配應力(sintering mismatch stress),另外此應力也可由兩者自由收縮速率的差值求得,發現這兩種方式所得到的應力值十分相似,顯示在共燒過程中,陶瓷層仍可維持自由燒結的行為,同時在顯微結構的觀察上也沒有發現共燒缺陷的生成,如裂紋、脫層或緻密度下降,其原因是由於共燒時所產生的不匹配應力,均小於陶瓷層本身的燒結驅動力,此外這兩種介電陶瓷都添加了相同的燒結助劑-ZB玻璃,可能是提高兩材料共燒相容性的一個重要因素。


    1. 簡介………………………………………………………………….1 2. 實驗方法…………………………………………………………….3 2.1 原料…………………………………………………………...3 2.2 漿料製備……………………………………………………...3 2.3 刮刀製程……………………………………………………...4 2.4 疊壓…………………………………………………………...4 2.5 收縮量量測…………………………………………………...5 2.6 曲率觀察……………………………………………………...5 2.7 單軸向黏度量測……………………………………………...5 2.8 微結構觀察…………………………………………………...6 3. 結果與討論………………………………………………………….7 3.1 HK與LK的收縮行為. ………………………………………7 3.2 曲率的發展... ………………………………………………...7 3.3 討論... ………………………………………………………...9 4. 結論... ………………………………………………………...14 5. 參考文獻... …………………………………………………...15

    [1] J. H. Jean and C. R. Chang,”Camber development during cofiring Ag-based low-dielectric-constant ceramic package,” J. Mater. Res.,12[1]2743-50(1997).
    [2] J. H. Jean and C. R. Chang,”Cofiring Kinetics and Mechanisms of an Ag-Metallized Ceramic-filled Glass Electronic Package,” J. Am. Ceram. Soc., 80[12]3084-92(1997).
    [3] J.H. Jean, C.R. Chang and Z.C. Chen, “Effect of Densification Mismatch on Camber Development during Cofiring Ni-Based Multilayer Ceramic Capacitors,” J. Am. Ceram. Soc., 80 [9], 2401-2406 (1997).
    [4] T. Cheng and R. Raj, “Flaw Generation during Constrained Sintering of Metal-Ceramic and Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72 [9] 1649-55 (1989).
    [5] S. Ho, C.Hillman, F. F Lange, and Z.Suo, “Surface Cracking in Layers under Biaxial, Residual Compressive Stress,” J. Am. Ceram. Soc., 78 [9] 2353-59 (1995).
    [6] P. Z. Cai, D. J. Green, and G. L. Messing, “Constrained Densification of Al2O3/ZrO2 Hybrid Laminates: I, Experimental Observations of Processing Defects,” J. Am. Ceram. Soc., 80 [8] 1929-39 (1997).
    [7] P. Z. Cai, D. J. Green, and G. L. Messing, “Constrained Densification of Al2O3/ZrO2 Hybrid Laminates: II, Viscous Stress Computation,” J. Am. Ceram. Soc., 80 [8] 1940-48 (1997).
    [8] R. K. Bordia and G. W. Scherer, “On Constrained Sintering-I. Constitutive Model for a Sintering Body,” Acta. Metall., 36 [9] 2393-97 (1988).
    [9] P. Z. Cai, G. L. Messing and D. J. Green, “Determination of the Mechanical Response of Sintering Compacts by Cyclic Loading Dilatometry,” J. Am. Ceram. Soc., 80 [2] 445-52 (1997).
    [10] R. K. Bordia and G. W. Scherer, “On Constrained Sintering-II. Comparison of Constitutive Models,” Acta. Metall., 36 [9] 2399-2409 (1988).
    [11] S. Y. Tzeng and J. H. Jean, “Stress Development during Constrained Sintering of Alumina/Glass/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [2] 335-40 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE