簡易檢索 / 詳目顯示

研究生: 許嘉紋
Hsu, Chia Wen
論文名稱: 含苯基矽氧烷環氧樹脂/雙酚A環氧樹脂混成材料製備、特性與老化行為研究及新型液態奈米氧化鋯-矽氧烷混成樹脂合成與特性研究
Preparation, characterization and thermal aging behaviors of phenylmethylsiloxane-modified epoxy/ DGBEA hybrids, and Synthesis and characterization of novel liquid zirconium-siloxane hybrid resin
指導教授: 談駿嵩
Tan, Chung Sung
馬振基
Ma, Chen Chi
口試委員: 談駿嵩
Tan, Chung Sung
馬振基
Ma, Chen Chi
李宗銘
Lee, Tzong Ming
李巡天
Li, Hsun Tien
洪仁陽
Horng, Ren Yang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 237
中文關鍵詞: 矽氧烷環氧樹脂發光二極體封裝材料奈米氧化鋯-矽氧烷混成樹脂有機-無機混成材料
外文關鍵詞: phenylmethylsiloxane-modified epoxy, LED encapsulant, zirconium-siloxane hybrid resin, organic-inorganic hybrid materials
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究旨在以苯基甲基矽氧烷 (Phenylmethylsiloxane- modified epoxy, PMSE)改質環氧樹脂製備有機無機混成透明材料應用在LED封裝材料特性,以及深入探討混成透明材料硬化交聯網構型與在熱老化過程中產生的性質變化。針對改善矽氧烷改質脂環族環氧樹脂 (silicone-modified cycloaliphatic epoxy, SEP)硬化反應性較低問題,嘗試以溶膠-凝膠 (Sol-gel)製程合成新型無溶劑液態氧化鋯混成樹脂 (Zr–QR),探討此Zr–QR對硬化反應加速作用並製備具高透明性矽氧烷改質脂環族環氧樹脂-氧化鋯混成奈米複合材料。
    本論文第一部份研究旨在以苯基甲基矽氧烷改質環氧樹脂 (Phenylmethylsiloxane-modified epoxy, PMSE)與傳統雙酚A環氧樹脂 (DGEBA)用甲基六氫苯酐 (MHHPA)硬化交聯製備形成有機/無機混成透明材料,藉以改善傳統透明環氧樹脂耐熱老化特性應用在LED封裝材料;研究高溫熱老化對此混成材料特性的影響以及對應到LED出光效能穩定性。利用DSC和FTIR研究混成材料之硬化行為,以反應動力學分析混成材料硬化活化能,混成材料在150℃長時間老化的光學特性,機械性質以及封裝之LED出光效能分別由分光色度計、DMA和積分球分析。
    研究結果顯示,DGEBA–PMSE混成材料之光穿透度大於88%,並且在150℃ 30天熱老化實驗後之光穿透度下降10%,此光學穩定性同時也對應到封裝LED出光效能 (Light output)特性提昇上,30天熱老化實驗後,DGEBA–PMSE混成材料其LED出光效能較DGEBA–MHHPA提升19%。除了光學特性影響LED出光效能穩定性之外,從DMA機械分析上也發現,DGEBA–PMSE混成材料在熱老化過程中alpha 轉變溫度 (Alpha relaxation temperature, Tα)和鬆弛強度 (Relaxation strength)有增加的現象,對於LED出光效能產生其他影響。機械性質的變化原因來自於分子重新排列,利用TEM觀察結果顯示,這個現象發生在混成材料奈米尺度的範圍內,重新排列造成材料變硬而應力累積導致LED出光效能下降。因此,在高溫長時間老化實驗中,LED出光效能穩定性同時受到材料光學特性和機械特性影響,在0.2當量PMSE改質混成材料配方中,兼具光學與機械特性穩定使得封裝LED有最穩定之出光效能,其出光效能分別較DGEBA–MHHPA和DGEBA–PMSE-0.4提升19%和22%。
    本論文之第二部分延續第一部份研究,對於混成材料於熱老化過程於奈米尺度範圍內的分子重排現象,進一步研究DGEBA–PMSE混成材料硬化交聯網構型與不同老化溫度下結構鬆弛特性,利用動態機械分析儀 (Dynamic mechanical analyzer, DMA)分析混成材料動態機械性質進而分析其硬化交聯網構型,再利用正電子湮滅壽命光譜儀 (Positron annihilation lifetime spectroscopy, PALS)深入研究DGEBA–PMSE熱老化過程中自由體積和自由體積分率變化;除了研究混成材料硬化交聯網構型之外,也將混成材料於熱老化過程中鬆弛行為進行量化分析。
    從DMA結果分析得知,以0.2當量PMSE改質混成材料配方(DGEBA–PMSE-0.2)和0.4當量PMSE改質混成材料配方(DGEBA–PMSE-0.4)硬化交聯後材料之玻璃轉移溫度隨著PMSE的含量提高而下降,但α轉變峰半高寬、交聯密度卻未隨之下降,反而高於PMSE–MHHPA與DGEBA–MHHPA,說明具有甲基苯基取代基的矽氧烷鏈硬化的PMSE交聯網與DGEBA交聯網形成互穿現象,形成互穿高分子交聯網 (Interpenetrating polymer networks, IPNs),進而增加高度發散的物理交聯點。在PALS的o–Ps intensity研究中,利用雙疊加式指數函數迴歸模型 (Double additive exponential model)和KWW迴歸模型 (Kohlrausch–Williams–Watts exponential model)深入研究DGEBA–PMSE-0.4在150℃和55℃熱老化過程的結構鬆弛現象,其中雙疊加式指數函數迴歸模型對DGEBA–PMSE-0.4在熱老化過程中的結構鬆弛行為有較佳的描述,從150℃時得到單一鬆弛時間表示整個IPN結構都在進行鬆弛過程,而在55℃熱老化實驗中,雙疊加式指數函數迴歸模型公式提供了IPN結構鬆弛行為更深入的訊息,表示了兩個個別鬆弛時間,37.4小時 (ζ1)和753.6小時 (ζ2),其中較短鬆弛時間ζ1屬於處於橡膠態的PMSE硬化交聯網結構鬆弛,較長鬆弛時間ζ2屬於處於玻璃態的DGEBA硬化交聯網結構鬆弛,因此可以說,雙疊加式指數函數迴歸模型對於此DGEBA–PMSE混成材料可以有效預測其鬆弛行為。
    本論文之第三部分研究溶膠-凝膠 (Sol-gel)合成新型無溶劑液態氧化鋯混成樹脂 (Zr–QR),先利用長鏈矽氧烷醇(Silanol-terminated polydimethylsiloxane, DMS-S12)與Zirconium butoxide形成反應鍵結並由Zirconium butoxide形成之氧化鋯團簇物(Zirconium butoxide)隔開,再利用反應性矽烷 (γ-glycidoxypropyltrimethoxysilane, Z-6040)將氧化鋯混成樹脂粒徑穩定控制在奈米等級。利用FTIR和1H-NMR監控合成步驟,TEM觀察氧化鋯混成樹脂有序型態;再將氧化鋯混成樹脂與熱穩定型矽氧烷改質脂環族環氧樹脂 (Silicone-modified cycloaliphatic epoxy, SEP)製備成高透明熱穩定之奈米複合材料,利用FTIR、DSC研究其硬化行為,並以分光色差計分析光學特性以及以TEM進行微/奈型態觀察。
    研究結果顯示,合成的Zr–QR為液態並具有有序型態,FT-IR觀察到特徵吸收968 cm−1證實–Si–O–Zr– hetero-linkages的形成,可有效降低了zirconium butoxide水解縮合速率。 1H-NMR觀察到化學位移2.5- 3.8 ppm證實Z-6040的存在, Z-6040可將有序相尺寸穩定控制在小於5 nm。Zr–QR與矽氧烷改質脂環族環氧樹脂有相容性,搭配液態酸酐硬化劑 (methylhexahydrophthalic anhydride, MHHPA)製備奈米複合材料,從FT-IR結果顯示,Zr–QR和MHHPA先反應形成有1464 cm−1 and 1564 cm−1特徵吸收的螯合配位體和有1704 cm−1特徵吸收的carboxylic acid,其中carboxylic acid可以促進SEP和MHHPA之間的反應。在DSC中反應放熱溫度在166℃,而螯合配位體可以抑制Zr–QR自身縮合反應速度,所製備的SEP–Zr–QR奈米複合材料具有高光學穿透度,在可見光範圍為88%。


    The aims of this research are development the silicone-modified epoxy based organic-inorganic transparent hybrids for high performance LED encapsulant applications. The thermal stability and cured network relaxation behaviors of transparent hybrids during thermal aging were investigated. Moreover, a liquid zirconium hybrid resin (Zr–QR) was synthesized through sol-gel reactions in order to increase the reactivity of silicone-modified cycloaliphatic epoxy. The acceleration ability of the Zr–QR and the fabrication of a transparent silicone-modified cycloaliphatic epoxy– zirconium nanocomposite were studied in this research.
    The first part of this study is to investigate the thermal stability of the diglycidyl ether of bisphenol A (DGEBA)–methylhexahydrophtalic anhydride (MHHPA) modified with phenylmethylsiloxane-modified epoxy (PMSE) and the effects of this hybrid on the performance of light emitting diodes (LEDs). The optical and dynamic mechanical properties of the materials, and the effects of these properties on the light output from the encapsulated LEDs, were studied following long-term thermal ageing at 150℃. The DGEBA–PMSE hybrids were highly transparent and its optical stability was shown in the stable light output of the LED, which was 19% higher than that of LEDs encapsulated by DGEBA–MHHPA after 30 days. The conformation rearrangement occurred in the nanoscale domain of the hybrids after thermal ageing, which caused the dynamic mechanical effect on the LED performance, as demonstrated by TEM. The hybrid modified using 0.2 equivalents of PMSE possessed both optical and dynamic mechanical stability were investigated, and resulted in the most stable LED performance.
    In the second part of this study, the cured network conformations and structural relaxation behaviours of the diglycidyl ether of bisphenol A (DGEBA)-methylhexahydrophthalic anhydride (MHHPA) modified with phenylmethylsiloxane-modified epoxy (PMSE) at different aging temperatures were studied using dynamic mechanical analysis (DMA) and positron annihilation lifetime spectroscopy (PALS). The DMA results revealed that the cured PMSE network can insert into the cured DGEBA network to form interpenetrating polymer networks (IPNs). The structural relaxation behaviours of DGEBA–PMSE-0.4 prepared using DGEBA, PMSE, and MHHPA at a ratio of 0.6:0.4:1 by equivalent weight were studied using PALS at 150°C and 55°C. The aging-induced free volume relaxation parameters of DGEBA–PMSE-0.4 at 150°C and 55°C were investigated using the double additive exponential model and the Kohlrausch–Williams–Watts exponential model. For double additive exponential model, only one relaxation time (ζ) of 584.5 h was found at 150°C; By contrast, there were two separate relaxation times of 37.4 h (ζ1) and 753.6 h (ζ2) at 55°C. The ζ1 of the IPNs hybrid can be attributed to the network relaxation of PMSE, and the ζ2 can be attributed to the network relaxation of DGEBA at 55°C. The results suggested the double additive exponential model can effectively predict DGEBA–PMSE hybrid relaxation behaviours.
    In the third part of this study, a liquid zirconium hybrid resin (Zr–QR) was synthesized through sol-gel reactions of zirconium butoxide with silanol-terminated polydimethylsiloxane (DMS-S12) and γ- glycidoxypropyltrimethoxysilane (Z-6040). The sol-gel reactions were monitored using Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance spectroscopy. The Zr–QR morphology was investigated using field emission transmission electron microscopy. The Zr–QR had a well-ordered morphology and the dimension was less than 5nm. These properties were achieved because DMS-S12 was used to separate the zirconium clusters and Z-6040 was used to stabilize the Zr–QR. The acceleration of the curing reaction between silicone-modified cycloaliphatic epoxy (SEP) and methylhexahydrophthalic anhydride (MHHPA) caused by the Zr–QR was investigated. Differential scanning calorimetry and FT-IR spectroscopy investigations showed that the Zr–QR first reacted with MHHPA, producing chelating ligands and carboxylic acid. Unlike in the conventional method (adding acetic acid to cause non-reactive chelating ligands to form the carboxylic acid), the carboxylic acid can accelerate the curing reaction between the SEP and MHHPA effectively. The chelating ligand generated from the Zr–QR and MHHPA suppressed the gelation of the Zr–QR itself during the nanocomposite (SEP–Zr–QR) curing process. The cured SEP–Zr–QR nanocomposite exhibited excellent optical transmittance which was above 88% at visible wavelengths.

    摘要 I Abstract V 謝誌 VIII 目錄 IX 圖目錄 XIV 表目錄 XXVI 第一章、緒 論 1 1-1 高分子奈米混成材料技術 1 1-2 發光二極體 (LED)構裝材料技術 10 1-2-1 發光二極體 (LED)簡介 10 1-2-2 LED封裝製程簡介 18 1-3 參考文獻 22 第二章、理論基礎與文獻回顧 32 2-1 LED封裝材料發展現況 32 2-1-1現用LED封裝材料種類與特性 32 2-1-2矽氧烷改質環氧樹脂封裝材料文獻回顧 40 2-2 環氧樹脂與矽氧烷材料介紹 50 2-2-1 環氧樹脂簡介 50 2-2-2 矽氧烷簡介 55 2-2-3 矽氧烷改質環氧樹脂有機無機混成材料 56 2-3 矽氧烷改質環氧樹脂相關文獻 63 2-4 有機-無機奈米透明混成材料 97 2-5 反應動力學 113 2-6 正子湮滅光譜應用高分子材料特性結構研究 115 2-7 研究目的與內容 127 2-8 參考文獻 129 第三章、熱老化對於應用於LED封裝材料之矽氧烷改質環氧樹 脂在光學、機械與型態學特性影響 142 3-1 前言 142 3-2 實驗方法 144 3-2-1 實驗藥品 144 3-2-2 實驗儀器與設備 145 3-2-3 實驗方法 147 3-3 結果與討論 150 3-3-1 DSC硬化溫度範圍選取 150 3-3-2 以FT-IR選則後硬化條件 151 3-3-3 反應動力學分析 154 3-3-4 長時間熱老化實驗 158 3-4 結論 172 3-5 參考文獻 173 第四章、正電子湮滅壽命光譜儀研究苯基甲基矽氧烷改質環氧 樹脂混成透明材料不同老化溫度之結構鬆弛現象 178 4-1 前言 178 4-2 實驗方法 180 4-2-1 實驗藥品 180 4-2-2 實驗儀器與設備 181 4-2-3 實驗方法 182 4-3 結果與討論 184 4-3-1 DMA研究DGEBA–PMSE混成材料硬化交聯網 形態 184 4-3-2 DGEBA–PMSE混成材料低溫轉變峰 (β transition) 特性分析 187 4-3-3 DGEBA–PMSE混成材料自由體積分析 188 4-3-4 DGEBA–PMSE-0.4於不同溫度下結構鬆弛行為 190 4-3-5 DGEBA–PMSE-0.4在不同溫度下結構鬆弛時間 194 4-4 結論 196 4-5 參考文獻 198 第五章、液態氧化鋯混成樹脂合成與其用於促進透明矽氧烷改 質脂環族環氧樹脂奈米復合材料硬化能力研究 203 5-1 前言 203 5-2 實驗方法 205 5-2-1 實驗藥品 205 5-2-2 實驗儀器與設備 207 5-2-3 實驗方法 209 5-3 結果與討論 212 5-3-1 用溶膠-凝膠法合成液態氧化鋯混成樹脂 (Zr–QR) 212 5-3-2 Zr–QR的有序結構型態觀察 215 5-3-3 Zr–QR/MHHPA螯合配位體 (Chelating ligand)形成 217 5-3-4 Zr–QR促進SEP–Zr–QR奈米複合材料硬化反應 研究 218 5-3-5 SEP–Zr–QR奈米複合材料型態研究 222 5-4 結論 225 5-5 參考文獻 226 第六章、總結論 230 附錄、作者簡介及發表論文一覽表 234

    1. “非水相法合成環氧樹脂與聚醯胺醯亞胺樹脂-矽化物混成奈米複合材料及其關特性研究”, 李宗銘, 國立清華大學博士論文, 2006
    2. “功能性奈米複材製備與應用”,楊偉達, http://gsmat5.weebly.com/211513302124615228563185935079264483506920633332872503329992.html.
    3. Shu-Hang Liao, Chih-Hung Hung, Chen-Chi M. Ma, Chuan-Yu Yen,Yu-Feng Lin, Cheng-Chih Weng, “Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells”, Journal of Power Sources, Vol.176(1): 175-182, 2008.
    4. Qiang Yin, Kang-ning Sun, Ai-ju Li, Lei Shao, Song-ming Liu, Chang Sun, “Study on carbon nanotube reinforced phenol formaldehyde resin/graphite composite for bipolar plate”, Journal of Power Sources, Vol.175(2): 861-865, 2008.
    5. Yu-Sheng Wang, Shin-Yi Yang, Shin-Ming Li, Hsi-Wen Tien, Sheng-Tsung Hsiao, Wei-Hao Liao, Chia-Hong Liu, Kuo-Hsin Chang, Chen-Chi M. Ma, Chi-Chang Hu, “Three-dimensionally porous graphene–carbon nanotube composite-supported PtRu catalysts with an ultrahigh electrocatalytic activity for methanol oxidation”, Electrochimica Acta, Vol.87: 261-269, 2013.
    6. A. Ghanbari, M.M. Attar, “A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate”, Journal of Industrial and Engineering Chemistry, Vol.23: 145-153, 2015.
    7. Tsung-Yen Tsai, Mei-Ju Lin, Ching-Wen Chang, Chen-Chi Li, “Morphology and properties of poly(methyl methacrylate)/clay nanocomposites by in-situ solution polymerization”, Journal of Physics and Chemistry of Solids, Vol. 71(4): 590-594, 2010.
    8. Jing chao Wang, Xian baoWang, Chun hui Xu, Min Zhang, Xiao peng Shang, “Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance”, Polymer International, Vol. 60(5): 816-822, 2011.
    9. J. Musil, “Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness”, Surface & Coatings Technology, Vol. 207: 50-65, 2012.
    10. Si Wu, Jing Shen, Jin tang Huang, Ye ping Wu, Zhou shun Zhang, Yan lei Hub, Wen xuan Wu, Wen hao Huang, Ke yi Wang, Qi jin Zhang, “Ag nanoparticle/azopolymer nanocomposites: In situ synthesis, microstructure, rewritable optically induced birefringence and optical recording”, Polymer, Vol. 51(6): 1395-1403, 2010.
    11. Suprakas Sinha Ray, “Recent Trends and Future Outlooks in the Field of Clay-Containing Polymer Nanocomposites”, Macromolecular Chemistry and Physics, Vol. 215(12): 1162-1179, 2014.
    12. Asif Abdul Azeez, Kyong Yop Rhee, Soo Jin Park,, David Hui, “Epoxy clay nanocomposites-processing, properties and applications: A review”, Composites: Part B, Vol. 45(1): 308-320, 2013.
    13. Ayhan Oral, Mehmet Atilla Tasdelen, Adem Levent Demirel, Yusuf Yagci, “Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer”, Polymer, Vol. 50(16): 3905-3910, 2009.
    14. Hakan Akat, Mehmet Atilla Tasdelen, Filip Du Prez Yusuf Yagci, “Synthesis and characterization of polymer/clay nanocomposites by intercalated chain transfer agent”, European Polymer Journal, Vol. 44(7): 1949-1954, 2008.
    15. Oana M. Istrate, Biqiong Chen, “Porous Exfoliated Poly(ε-caprolactone)/Clay Nanocomposites: Preparation, Structure, and Properties”, Journal of Applied Polymer Science, Vol.125(S12): E102-E112, 2012.
    16. David Aradilla, Denise Azambuja, Francesc Estrany, Maria T. Casas, Carlos A. Ferreirae and Carlos Aleman, “Hybrid polythiophene–clay exfoliated nanocomposites for ultracapacitor devices”, Journal of Materials Chemistry, Vol. 22(26): 13110-13122, 2012.
    17. Laura M. C. Dykes, John M. Torkelson, Wesley R. Burghardt, “Shear-Induced Orientation in Well-Exfoliated Polystyrene/Clay Nanocomposites”, Macromolecular, Vol. 45(3): 1622-1630, 2012.
    18. Shang-Han Wu, Feng-Yih Wang, Chen-Chi. M. Ma, Wen-Chi Chang, Chun-Ting Kuo, Hsu-Chiang Kuan, Wei-Jen Chen, “Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6rclay nanocomposites”, Materials Letters, Vol. 49(6): 327-333, 2001.
    19. Hsu-Chiang Kuan, Chen-Chi M.Ma, Wen-Ping Chuang, Hsun-Yu Su, “Hydrogen Bonding, Mechanical Properties, and Surface Morphology of Clay/Waterborne Polyurethane Nanocomposites”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 43(1): 1-12, 2005.
    20. Hsu-Chiang Kuan, Wen-Ping Chuang, Chen-Chi M.Ma, Chin-Lung Chiang, Han-Lang Wu, “Synthesis and characterization of a clay/waterborne polyurethane nanocomposite”, JOURNAL OF MATERIALS SCIENCE, Vol. 40(1): 179-185, 2005.
    21. Wei an Zhang, Yu Li, Luo Wei, Yuee Fang, “In situ intercalative polymerization of poly(methyl methacrylate)/ clay nanocomposites by g-ray irradiation”, Materials Letters, Vol. 57(22-23): 3366–3370, 2003.
    22. Tsung-Yen Tsai, Mei-Ju Lin,Ching-Wen Chang, Chen-Chi Li, “Morphology and properties of poly(methyl methacrylate)/clay nanocomposites by in-situ solution polymerization”, Journal of Physics and Chemistry of Solids, Vol. 71(4): 590-594, 2010.
    23. Muhammed Aydin, Mehmet Atilla Tasdelen, Tamer Uyar, Steffen Jockusch, Nicholas J. Turro, Yusuf Yagci, “Polystyrene/Clay Nanocomposites by Atom Transfer Radical Nitroxide Coupling Chemistry”, JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, Vol. 51(5): 1024-1028, 2013.
    24. Mehmet Atilla Tasdelen, Wim Van Camp, Eric Goethals, Philippe Dubois,Filip Du Prez, Yusuf Yagc, “Polytetrahydrofuran/Clay Nanocomposites by In Situ Polymerization and “Click” Chemistry Processes”, Macromolecules, Vol. 41(16): 6035-6040, 2008.
    25. M. Hernandez, B. Sixou, J. Duchet, H. Sautereau, “The effect of dispersion state on PMMA-epoxy-clay ternary blends: In situ study and final morphologies”, Polymer, Vol. 48(14): 4075-4086, 2007.
    26. Mohammad Bashar, Pierre Mertiny, Uttandaraman Sundararaj, “Effect of Nanocomposite Structures on Fracture Behavior of Epoxy-Clay Nanocomposites Prepared by Different Dispersion Methods”, Journal of Nanomaterials, Vol. 2014(1): 1-12, 2014.
    27. S. Cecciaa, E.A. Turcatoa, P.L. Maffettoneb, R. Bongiovannia, “Nanocomposite UV-cured coatings: Organoclay intercalation by an epoxy resin”, Progress in Organic Coatings, Vol. 63(1): 110-115, 2008.
    28. Chuan Yu Yen, Shu Hang Liao, Yu-Feng Lin, Chih Hung Hung, Yao-Yu Lin, Chen-Chi M. Ma, “Preparation and properties of high performance nanocomposite bipolar plate for fuel cell”, Journal of Power Sources, Vol. 162(1): 309-315, 2006.
    29. Chen Chi M. Ma, Chun Ting Kuo, Hsu Chiang Kuan, Chin-Lung Chiang, ”Effects of Swelling Agents on the Crystallization Behavior and Mechanical Properties of Polyamide 6/Clay Nanocomposites”, Journal of Applied Polymer Science, Vol. 86(7): 1686-1693, 2003.
    30. Yu Feng Lin, Chuan Yu Yen, Chih Hung Hung, Yi Hsiu Hsiao, Chen Chi M. Ma, “A novel composite membranes based on sulfonated montmorillonite modified Nafion® for DMFCs”, Journal of Power Sources, Vol. 168(1): 162-166, 2007.
    31. Yu Feng Lin, Chuan Yu Yen, Chen Chi M. Ma, Shu Hang Liao, Chih Hung Hung, Yi-Hsiu Hsiao,” Preparation and properties of high performance nanocomposite proton exchange membrane for fuel cell”, Journal of Power Sources, Vol. 165(2): 692-700, 2007.
    32. Saptarshi Dhibar, Prativa Kar, B. B. Khatua, “Preparation of Highly Exfoliated and Transparent Polycarbonate/Clay Nanocomposites by Melt Blending of Polycarbonate and Poly(methyl methacrylate)/Clay Nanocomposites”, Journal of Applied Polymer Science, Vol. 125(S1): E601-609, 2012
    33. L.N. Luduena, J.M. Kenny, A. Vázquez, V.A. Alvarez, “Effect of clay organic modifier on the final performance of PCL/clay nanocomposites”, Materials Science and Engineering A, Vol. 529(25): 215-223, 2011.
    34. Sun Mou Lai, Sheng Huang Wu, Gwo Geng Lin, Trong Ming Don, ”Unusual mechanical properties of melt-blended poly(lactic acid) (PLA)/clay nanocomposites”, European Polymer Journal, Vol. 52: 193-206, 2014.
    35. Josep Pasqual Cerisuelo, RafaelGavara, Pilar Hernández Muñoz, “Diffusion modeling in polymer-clay nanocomposites for food packaging applications through finite element analysis of TEM images”, Journal of Membrane Science, Vol. 482: 92-102, 2015.
    36. R. Lujan Acosta, S. Sánchez Valdes, E. Ramírez Vargas, L.F. Ramos DeValle, A.B. Espinoza Martinez, O.S. Rodriguez Fernandez, T. Lozano Ramirez, P.G. Lafleur, “Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites”, Materials Chemistry and Physics , Vol. 146(3): 437-445, 2014.
    37. W. S. Wang, C. K. Liang, Y. C. Chen, Y. L. Su, T. Y. Tsai, Y. W. Chen Yang, “Transparent and flame retardant PMMA/clay nanocomposites prepared with dual modified organoclay”, Polymer International, Vol. 23(3): 625-631, 2012.
    38. Mohammad Mahdi Hasani Sadrabadi, Erfan Dashtimoghadam , Kaveh Sarikhania, Fatemeh S. Majedi, Ghader Khanbabaei, “Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications”, Journal of Power Sources, Vol. 195(9): 2450-2456, 2010.
    39. Ananta Kumar Mishra, Tapas Kuila, Nam Hoon Kim, Joong Hee Lee, “Effect of peptizer on the properties of Nafion-Laponite clay nanocomposite membranes for polymer electrolyte membrane fuel cells”, Journal of Membrane Science, Vol. 389: 316-323, 2012.
    40. M. Conradi, M. Zorko, A. Kocijan, I. Verpoest, “Mechanical properties of epoxy composites reinforced with a low volume fraction of nanosilica fillers”, Materials Chemistry and Physics, Vol. 137(3): 910915, 2013.
    41. M. G. Veena, N. M. Renukappa, J. M. Raj, C. Ranganathaiah, K. N. Shivakumar, “Characterization of Nanosilica-Filled Epoxy Composites for Electrical and Insulation Applications”, Journal of Applied Polymer Science, Vol. 121(5): 2752-2760, 2011
    42. Y. Rostamiyan, A. Fereidoon, A. Ghasemi Ghalebahman, A. Hamed Mashhadzadeh, A. Salmankhani, “Experimental study and optimization of damping properties of epoxy-based nanocomposite: Effect of using nanosilica and high-impact polystyrene by mixture design approach”, Materials and Design, Vol. 65: 1236-1244, 2015.
    43. Seunghwa Yang, Joonmyung Choi, and Maenghyo Cho, “Elastic Stiffness and Filler Size Effect of Covalently Grafted Nanosilica Polyimide Composites: Molecular Dynamics Study”, ACS Applied Materials & Interfaces, Vol. 4(9): 4792-4799, 2012.
    44. Raouf Alizadeh, Mousa Ghaemy, Maasoomeh Bazzar, “Study Properties of Nanocomposites Prepared With New Polyimides and Reactive Nanosilica by Epoxide Functionalization”, POLYMER COMPOSITES, Vol. 36(3): 545-555, 2015.
    45. Lihui Xu, Zaisheng Cai, Yong Shen, Liming Wang,Ying Ding, “Facile Preparation of Superhydrophobic Polyester Surfaces with Fluoropolymer/SiO2 Nanocomposites Based on Vinyl Nanosilica Hydrosols”, Journal of Applied Polymer Science, Vol. 131(11): 40340-40349, 2014.
    46. Constantina Stamatopoulou, Panagiotis Klonos, Stefanos Koutsoumpis, Vladimir Gun’ko, Polycarpos Pissis, Lyudmyla Karabanova, “Hydrophilic Nanocomposites Based on Polyurethane/Poly(2-hydroxyethyl methacrylate) Semi-IPNs and Modified/Unmodified Nanosilica for Biomedical Applications”, JOURNAL OF POLYMER SCIENCE, PART B: POLYMER PHYSICS, Vol.52(5): 397-408, 2014.
    47. M. OLIVEIRA, R. NOGUEIRA, A. V. MACHADO, “Hybrid Nanocomposite Preparation in a Batch Mixer and a Twin-Screw Extruder”, Advances in Polymer Technology, Vol. 32(S1): E732-E740, 2013.
    48. Qingliang He, Tingting Yuan, Suying Wei, Zhanhu Guo, “Catalytic and synergistic effects on thermal stability and combustion behavior of polypropylene: influence of maleic anhydride grafted polypropylene stabilized cobalt nanoparticles”, Journal of Materials Chemistry A, Vol. 1(42): 13064-13075, 2013.
    49. Mathieu Bailly, Marianna Kontopoulou, Khalil El Mabrouk, “Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites”, Polymer, Vol. 51(23): 5506-5515, 2010.
    50. Eunwoo Lee, Jin Yong Hong, Goran Ungar, Jyongsik Jang, “Crystallization of poly(ethylene oxide) embedded with surface-modified SiO2 nanoparticles”, Polymer International, Vol. 62(7): 1112-1122, 2013.
    51. Toshiaki Taniike, Masahito Toyonaga, Minoru Terano, “Polypropylene-grafted nanoparticles as a promising strategy for boosting physical properties of polypropylene-based nanocomposites”, Polymer, Vol. 55(4): 1012-1019, 2014.
    52. M. Yang, Y. Gao, J. P. He, H. M. Li, “Preparation of polyamide 6/silica nanocomposites from silica surface initiated ring-opening anionic polymerization”, eXPRESS Polymer Letters, Vol. 1(7): 433-442, 2007.
    53. Dong Gyun Kim, Hyo Kang, Sung soo Han, Jong Chan Lee, “Dual Effective Organic/Inorganic Hybrid Star-Shaped Polymer Coatings on Ultrafiltration Membrane for Bio- and Oil-Fouling Resistance”, ACS Appl. Mater. Interfaces, Vol. 4(11): 5898-5906, 2012.
    54. Oskar Bera, Jelena Pavlicˇ evic´ , Mirjana Jovicˇ ic´ , Dragoslav Stoiljkovic´ , Branka Pilic´ , Radmila Radicˇ evic, “The Influence of Nanosilica on Styrene Free Radical Polymerization Kinetics”, POLYMER COMPOSITES, Vol. 33(2): 262-266, 2012.
    55. Yan Yuan, Ning Chen, Ren Liu, Sheng wen Zhang, Xiaoya Liu, “A novel acrylic prepolymer/methacrylate modified nano-SiO2 composite used for negative photoresist”, Materials Research Bulletin, Vol. 50: 392-398, 2014.
    56. K. Szwarc-Rzepka, N. Gogola, K. Siwińska-Stefańska, B. Marciniec, T. Jesionowski, “Synthesis and physicochemical characterization of silica fi llers modified with octakis ({3-methacryloxypropyl} dimethylsiloxy) octasilsesquioxane”, Polish Journal of Chemical Technology, Vol. 15(4):15-23, 2013.
    57. Ismail Ab Rahman, Vejayakumaran Padavettan, “Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, SurfaceModification, and Applications in Silica-Polymer Nanocomposites—A Review”, Journal of Nanomaterials, Vol. 2012, Article ID 132424, 15 pages, 2012.
    58. TZONG MING LEE, CHEN CHI M. MA, “Nonaqueous Synthesis of Nanosilica in Epoxy Resin Matrix and Thermal Properties of Their Cured Nanocomposites”, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 44(2): 757-768, 2006.
    59. Sergii Ponyrko, Libor Kobera, Jirí Brus, Libor Matejka, “Epoxy-silica hybrids by nonaqueous sol-gel process”, Polymer, Vol. 54(23): 6271-6282, 2103.
    60. Chun Xia, Michael Waletzko, Klaus Peppler, Jürgen Janek, “Silica Nanoparticles as Structural Promoters for Oxygen Cathodes of Lithium−Oxygen Batteries”, The Journal of Physical Chemistry C, Vol. 117(39): 19897-19904, 2013.
    61. 鄭景太, “高功率LED封裝技術的發展現況-上篇”, 工業材料雜誌, 264期, 12月號, p.136-144, 2008.
    62. http://www.lextar.com/?sn=79&lang=zh-TW
    63. 鄭景太, “高功率LED封裝技術的發展現況-下篇”, 工業材料雜誌, 266期, 2月號, p.117-128, 2009.
    64. “EFFICIENT BLUE LIGHT-EMITTING DIODES LEADING TO BRIGHT AND ENERGY-SAVING WHITE LIGHT SOURCES”, compiled by the Class for Physics of the Royal Swedish Academy of Sciences, 2014.
    65. 黃淑禎, 許嘉紋, 陳文彬, 張語恒, 陳凱琪, 李巡天, “發光二極體(LED)構裝材料技術介紹與發展趨勢”, 工業材料雜誌, 306期, 6月號, p.153-161, 2012.
    66. 黃雅琳, “末路明燈-LED引亮產業坦途”, 拓墣產業研究報告, 2009.
    67. 黃忠民, “從法蘭克福照明展看LED照明產業現況及趨勢(上)”, 材料世界網, 2012.
    68. “LED產業趨勢”, 拓樸產業研究所, 2007.
    69. 陳凱琪, 李巡天, 許嘉紋, 林志浩, “LED元件用高效能透明封裝材料技術趨勢(上)”, 工業材料雜誌, 246期, 6月號, p.162-165, 2007.
    70. 林志勳, “LED材料成本結構及台灣LED用膠材市場調查”, 工研院產業經濟與趨勢研究中心研究報告, 2007.
    1. 李巡天, “台灣高性能LED封裝材料技術發展介紹”, 工業材料雜誌, 258期, 6月號, p.196-203, 2008.
    2. Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc. Vol. 4: 179-226, 2006.
    3. http://www.npc.com.tw/Petrochemicals_1st_Div/24_1_NYNOX-1010-1010G.htm
    4. Lutz J. T. Jr., Thermoplastic Polymer Additives, Marcel Dekker, Inc, 1989.
    5. Yasumasa Morita, “Cationic Polymerization of Hydrogenated Bisphenol-A Glycidyl Ether with Cycloaliphatic Epoxy Resin and Its Thermal Discoloration”, Journal of Applied Polymer Science, Vol. 97(3): 1395-1400, 2005.
    6. http://www.osram-os.com/osram_os/EN/
    7. http://www.nichia.co.jp/en/about_nichia/index.html
    8. 黃淑禎, 許嘉紋, 林志浩, 陳文彬, 張語恆, 陳凱琪, 李巡天, “發光二極體(LED)構裝材料技術介紹與發展趨勢”, 工業材料雜誌, 306期, 6月號, p.153-161, 2012.
    9. “LED Silicone Materials”, ShinEtsu Co., 2009.
    10. Malgorzata IWona Rubinsztajn, Niskayuna, Slawomir Rubinsztajn, Niskayuna, “Epoxy Resin Compostions, Solid State Devices Encapsulated Therewith and Method”, US Patent US 2003/0212230 A1, 2003.
    11. Wei Huang, Ying Zhang, Yun zhao Yu, You xue Yuan, “Studies on UV-Stable Silicone–Epoxy Resins”, Journal of Applied Polymer Science, Vol. 104 (6): 3954-3959, 2007.
    12. Yasumasa Morita, Seitarou Tajima, Hiroshi Suzuki, Hiroaki Sugino, “Cationic Copolymerization of Epoxy Siloxane Monomer with Liquid Poly-Butadiene and its Light Emitting Diode Encapsulation”, Journal of Applied Polymer Science, Vol. 109 (3): 1808-1813, 2008.
    13. Seung Cheol Yang, Joon Soo Kim, Jung Ho Jin, Seung Yeon Kwak, Byeong Soo Bae, “Thermal Resistance of Cycloaliphatic Epoxy Hybrimer Based on Sol-Gel Derived Oligosiloxane for LED Encapsulation”, Journal of Applied Polymer Science, Vol. 117 (4): 2140-2145, 2010.
    14. Joon Soo Kim, Seung Cheol Yang, Byeong Soo Bae, “Thermally Stable Transparent Sol-Gel Based Siloxane Hybrid Material with High Refractive Index for Light Emitting Diode (LED) Encapsulation”, Chemistry of Materials, Vol. 22 (11): 3549-3555, 2010.
    15. Joon Soo Kim, Seung Cheol Yang, Seung Yeon Kwak, Yong won Choi, Kyung Wook Paik, Byeong Soo Bae, “High performance encapsulant for light-emitting diodes (LEDs) by a sol–gel derived hydrogen siloxane hybrid”, Journal of Material Chemistry, Vol. 22: 7954-7960, 2012.
    16. Seung Cheol Yang, Joon Soo Kim, Jung Ho Jin, Seung Yeon Kwak, Byeong-Soo Bae, “Cycloaliphatic Epoxy Oligosiloxane-Derived Hybrid Materials for a High-Refractive Index LED Encapsulant”, Journal of Applied Polymer Science, Vol. 122 (4): 2478-2485, 2011.
    17. Seung Cheol Yang, Seung Yeon Kwak, Jung Ho Jin, Joon Soo Kim, Yong won Choi, Kyung Wook Paik, Byeong Soo Bae, “Thermally resistant UV-curable epoxy–siloxane hybrid materials for light emitting diode (LED) encapsulation”, Journal of Material Chemistry, Vol. 22: 8874-8880, 2012.
    18. Ying Zhang, Xin Yang, Xiao juan Zhaoa,Wei Huang, “Synthesis and properties of optically clear silicone resin/epoxy resin hybrids”, Polymer International, Vol. 61 (2): 294-300, 2012.
    19. Nan Gao, Wei Qu Liu, Zhen Long Yan, Zheng Fang Wang, “Synthesis and properties of transparent cycloaliphatic epoxy–silicone resins for opto-electronic devices packaging”, Optical Materials, Vol. 35 (3): 567-575, 2013.
    20. 桓內弘 著, 賴耿陽 譯, “環氧樹脂應用實務”, 復漢出版本土,台北,1993.
    21. Jiang dong Tong, Ru ke Bai, Ying fang Zou. Cai yuan Pan, Shigeki Ichimura, “Flexibility improvement of epoxy resin by using polysiloxanes and their derivatives”, Journal of Applied Polymer Science, Vol. 52 (10): 1373-1381, 1994.
    22. SHYUE TZOO LIN, STEVE K. HUANG, “Thermal degradation study of siloxane-DGEBA epoxy copolymers”, European Polymer Journal, Vol. 33 (3): 365-373, 1997.
    23. H. Hillborg, U.W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges”, Polymer, Vol. 39 (10): 1991-1998, 1998.
    24. Brigitta Baugher, Douglas A. Loy, S. Prabakar, Roger A. Assink, Kenneth J. Shea, Henry Oviatt, “Porosity in hexylene-bridged polysilsesquioxanes. Effects of monomer concentration”, Materials Research Society Symposium Proceeding, Vol. 371: 253-259, 1995.
    25. 馬振基, 奈米材料科技原理與應用, 全華書局, 台北, 2003
    26. https://facultystaff.richmond.edu/~cparish/resrch.htm
    27. Yie Chan Chiu, I Chen Chou, Hsieh Chih Tsai, Linawati Riang, Chen Chi M. Ma, “Morphology, Thermal and Mechanical Properties of the Polyhedral Oligomeric Silsesquioxane Side-Chain Epoxy Hybrid Material”, Journal of Applied Polymer Science, Vol. 118 (6): 3723-3732, 2010.
    28. Belen Montero, Carmen Ramırez, Maite Rico, Luis Barral, Javier Dıez, Joaquın Lopez, “Effect of an epoxy octasilsesquioxane on the thermodegradation of an epoxy/amine system”, Polymer International, Vol. 59 (1): 112-118, 2010.
    29. Jun Kai Herman Teo, Cher Ling Toh, Xue hong Lu, “Catalytic and reinforcing effects of polyhedral oligomeric silsesquioxane (POSS)-imidazolium modified clay in an anhydride-cured epoxy”, Polymer, Vol. 52 (19): 1975-1982, 2011.
    30. M. Dutkiewicz, M. Szołyga, H. Maciejewski, B. Marciniec, “Thiirane functional spherosilicate as epoxy resin modifier Synthesis and thermal stability”, Journal of Thermal Analysis and Calorimetry, Vol. 117 (1): 259-264, 2014.
    31. Dow A. Rogers, “Epoxy-substituted organo Silicon Compounds and Method for Preparing the Same”, U. S. Patent 2883395, 1959.
    32. E. M. Yorkgitis, N. S. Eiss Jr., C. Tran, G. L. Wilkes, J. E. McGrath, “Siloxane Modified Epoxy Resins”, Advances in Polymer Science, Epoxy Resins and Composites I, Vol. 72: 79-109, 1985.
    33. J. L. Hedrick, B. Haidar, T. P. Russell, D. C. Hofer, “Synthesis and Properties of Segmented and Block Poly (Hydroxy - Ether - Siloxane) Copolymers”, Macromolecules, Vol. 21 (6): 1967-1977, 1988.
    34. Crivello, J. V., Lee, J. L., “The Synthesis Characterization and Photoinitiated Cationic Polymerization of Silicone- Containing Epoxy Resins”, Journal of Polymer Science, Part A: Polymer Chemistry, Vol. 28 (3): 479-503, 1990.
    35. K. Tatsuya, Y. Kiichi, S. Masaki, K. Ronbunshu, “日本高分子論文集” Vol. 47: 185, 1990.
    36. Kimihiro Matsukawa, Kiichi Hasegawa, Hiroshi Inoue, Akinori Fukuda, Yasushi Arita, “Preparation and Curing Behavior of Siloxane – Containing Epoxy Resins”, Journal of Polymer Science, Part A: Polymer Chemistry, Vol. 30 (9): 2045-2048, 1992.
    37. Kiichi, S. Masaki, K. Ronbunshu,”日本高分子論文集”, Vol. 50:621, 1993.
    38. Philip. A. Fonkalsrud, “Polyamide – Epoxy – silicone Modified Coating Compositions”, U. S. Patent 5, 317, 046, 1994.
    39. Tzong Hann Ho, Chun Shan Wang, “Modification of Epoxy Resins by Hydrosilation for Electronic Encapsulation Application”, Journal of Applied Polymer Science, Vol. 54 (1): 13-23, 1994.
    40. Tzong Hann Ho, Chun Shan Wang, “Low – Stress Encapsulants by Vinylsiloxane Modification”, Journal of Applied Polymer Science, Vol. 51 (12): 2047-2056, 1994.
    41. Jiang dong Tong, Ruke Bai, Ying fang Zou, Cai yuan Pan, Shigeki Ichimura, “Flexibility Improvement of Epoxy Resins by Using Polysiloxanes and Their Derivatives”, Journal of Applied Polymer Science, Vol. 52 (10): 1373-1381, 1994.
    42. Shyue Tzoo Lin, Steve K. Huang, “Study of Curing Kinetics of Siloxane - Modified DGEBA Epoxy Resins”, Journal of Applied Polymer Science, Vol. 62 (10): 1641-1649, 1996.
    43. Tzong Hann Ho, Chun Shan Wang, “Modification of Epoxy Resins with Polysiloxane Thermoplastic Polyurethane for Electronic Encapsulation I.”, Polymer, Vol. 37 (13): 2733-2742, 1996.
    44. Tsung Han HO, Jenn Hwa Wang, Chun Shan Wang, “Modification of Epoxy Resins with Polysiloxane TPU for Electronic Encapsulation II.”, Journal of Applied Polymer Science, Vol. 60 (8): 1097-1107, 1996.
    45. Ming Chun Lee, Tsung Han Ho, Chun Shan Wang “Synthesis of Tetrafunctional Epoxy Resins and Their Modification with Polydimethylsiloxane for Electronic Application”, Journal of Applied Polymer Science, Vol. 62 (1): 217-225, 1996.
    46. Jeng Yueh Shieh, Tsung Han Hoe, ChunShan Wang, “Synthesis and Modification of Trifunctional Epoxy Resin with Amine Terminated Polydimethylsiloxanes for Semiconductor Encapsulation Application”, Journal of Polymer Research, Vol. 3 (2): 125-131, 1996.
    47. T. P. Skourlis, R. L. McCullough, “Experimental investigation of the effect of prepolymer molecular weight and stoichiometry on thermal and tensile properties of epoxy resins”, Journal of Applied Polymer Science, Vol. 62 (3): 481-490, 1996.
    48. PoHou Sung, Chien Yang Lin, “Polysiloxane modified Epoxy Polymer Network – II. Dynamic Mechanical Behavior of Multicomponent Graft-IPNs (Epoxy / Polysiloxane / Poly propylene Glycol)”, European Polymer Journal, Vol. 33 (3): 231-233, 1997.
    49. Shyue Tzoo Lin, Steve K. Huang, “Thermal Degradation Study of Siloxane –DGEBA Epoxy copolymers”, European Polymer Journal, Vol. 33 (3): 365-373, 1997.
    50. S.S. Lee, S.C. Kim, “Morphology and Properties of Polydimethyl siloxane –Modified Epoxy Resin”, Journal of Applied Polymer Science, Vol. 64 (5): 941-955, 1997.
    51. Emel Yilgor, Iskender Yilgor,”1, 3-bis (aminopropyl)tetra methyldisiloxane Modified Epoxy Resins : Curing and Characterization ”, Polymer, Vol. 39 (8-9): 1691-1695, 1998.
    52. Wen Chang Shih, Chen Chi M. Ma, “Tetrafunctional Aliphatic Epoxy. (I) Synthesis and Characterization”, Journal of Applied Polymer Science, Vol. 69 (1): 51-58, 1998.
    53. 施文昌, “改質環氧樹脂之合成方法及韌性、熱穩定性的特性研究”, 國立清華大學博士論文, 1998.
    54. Lee, S.S. and S.C. Kim, “Physical aging of polydimethylsiloxane-modified epoxy resin”, Journal of Applied Polymer Science, Vol. 69 (7): 1291-1300, 1998.
    55. Wen Chang Shih, Chen Chi M. Ma, Jen Chang Yang, Hung De Chen “Polydimethylsiloxane Containing Isocyanate Group Modified Epoxy Resin: Curing, Characterization and Properties”, Journal of Applied Polymer Science, Vol. 73 (13): 2739-2747, 1999.
    56. 陳宏德, “聚矽氧烷改質環氧樹脂之硬化與增韌研究”, 國立清華大學碩士論文, 1997.
    57. Sheng Shu Hou, Yen Pin Chung, Cheng Kuang Chan, Ping-Lin Kuo, “Function and performance of silicone copolymer. Part IV. Curing behavior and characterization of epoxy-siloxane copolymers blended with diglycidyl ether of bisphenol-A”, Polymer, Vol. 41 (9): 3263-3272, 2000.
    58. Ochi, M., Takahashi, R., Terauchi, A., “Phase structure and mechanical and adhesion properties of epoxy/silica hybrids”, Polymer, Vol. 42 (12): 5151-5158, 2001.
    59. 王豐益,“聚矽氧烷樹脂之合成與其聚摻合物之特性研究”, 國立清華大學博士論文, 2001.
    60. Gui Zhi Li, Li chang Wang, H. Toghiani, Tyrone L. Daulton, Kiyohito Koyama, Charles U. Pittman, Jr., “Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/ Ladderlike Polyphenylsilsesquioxane Blends”, Macromolecules, Vol. 34 (25): 8686-8693, 2001.
    61. Jiwon Choi, Jason Harcup, Albert F. Yee, Quan Zhu, and Richard M. Laine, “Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes”, Journal of the American Chemical Society, Vol. 123 (46): 11420-11430, 2001.
    62. J. C. Cabanelas, B. Serrano, J. González-Benito, J. Bravo and J. Baselga, “Morphology of Epoxy/Polyorganosiloxane Reactive Blends”, Macromolecular Rapid Communication, Vol. 22 (9): 694-699, 2001.
    63. Chin Lung Chiang, Chen Chi M. Ma, “Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method”, European Polymer Journal, Vol. 38 (11): 2219–2224, 2002.
    64. C. L. Chiang, F. Y. Wang, C. C. M. Ma, H. R. Chang, “Flame retardance and thermal degradation of new epoxy containing silicon and phosphorous hybrid creamers prepared by the sol-gel method”, Polymer Degradation and Stability, Vol. 77 (2): 273–278, 2002.
    65. S Ananda Kumar, T.S.N Sankara Narayanan, “Thermal properties of siliconized epoxy interpenetrating coatings”, Progress in Organic Coatings, Vol. 45 (4): 323-330, 2002.
    66. G.-M. Kim, H. Qin, X. Fang, F. C. Sun, P. T. Mather, “Hybrid Epoxy-Based Thermosets Based on Polyhedral Oligosilsesquioxane: Cure Behavior and Toughening Mechanisms”, Journal of Polymer Science, Part B: Polymer Physics, Vol. 41 (24): 3299-3313, 2003.
    67. Chin Lung Chiang, Chen Chi M. Ma, Feng Yih Wang, Hsu Chiang Kuan, “Thermo-oxidative degradation of novel epoxy containing silicon and phosphorous nanocomposites”, European Polymer Journal, Vol. 39 (4): 825-830, 2003.
    68. Jiwon Choi, Seung Gyoo Kim, Richard M. Laine, “Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes”, Macromolecules, Vol. 37 (1): 99-109, 2004.
    69. Geneviève Guillot, Teresa G. Nunes, Jean Pierre Ruaud, Mário Polido, “Crosslinking of epoxy-polysiloxane system by reactive blending”, Polymer, Vol. 45 (16): 5533-5541, 2004.
    70. Hong zhi Liu, Sixun Zheng, and Kangming Nie, “Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane”, Macromolecules, Vol. 38 (12): 5088-5097, 2005.
    71. Tzong Ming Lee, Chen Chi M. Ma, Chia Wen Hsu, Han Lang Wu, “Effect of molecular structures and mobility on the thermal and dynamical mechanical properties of thermally cured epoxy-bridged polyorganosiloxanes”, Polymer, Vol. 46 (19): 8286-8296, 2005.
    72. Sun, F., S.L. Jiang, J. Liu, “Study on cationic photopolymerization reaction of epoxy polysiloxane”, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, Vol. 264 (2): 318-211, 2008.
    73. Pinggui Liu, Li hua He, Jiang xuan Song, Xing quan Liang, Heyan Ding, “Microstructure and thermal properties of silyl-terminated polycaprolactone-polysiloxane modified epoxy resin composites”, Journal of Applied Polymer Science, Vol. 109 (2): 1105-1113, 2008.
    74. Yunfeng Liu, Weiqu Li, and Dan Yu, “Thermal properties and flam retardancy of epoxy resins modified with polysiloxane containing epoxy groups and redistributed poly (2, 6- dimthyl- 1,4- pheylene) chains”, Iranian Polymer Journal. Vol. 18 (6): 445-452, 2009.
    75. Song qi Ma, Wei qu Liu, Zheng jie Wei, Hong Jing Li, “Mechanical and thermal properties and morphology of epoxy resins modified by a silicon compound”, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 47 (11): 1084-1090, 2010.
    76. 邱奕釧, “碸型環氧樹脂單體與奈米複合材料之製備及其性質研究”, 國立清華大學博士論文, 2010.
    77. Yi ting Xu, Ying ying Ma, Yuan ming Deng, Cang jie Yang, Jiang feng Chen, Li zong Dai, “Morphology and thermal properties of organic-inorganic hybrid material involving monofunctional-anhydride POSS and epoxy resin”, Materials Chemistry and Physics, Vol. 125 (1-2): 174-183, 2011.
    78. S. Devaraju, M.R. Vengatesan, M. Selvi, J.K. Song, M. Alagar, “Hyperbranched Polysiloxane-Based Diglycidyl Ether of Bisphenol A Epoxy Composite for Low k Dielectric Application”, Polymer Composites, Vol. 34 (6): 904-911, 2013.
    79. Cristina Acebo, Xavier Fernandez Francos, Massimo Messorib, Xavier Ramis, Angels Serra, “Novel epoxy-silica hybrid coatings by using ethoxysilyl-modified hyperbranched poly(ethyleneimine) with improved scratch resistance”, Polymer, Vol. 55 (20): 5028-5035, 2014.
    80. Z. Ahmad, Fakhriea Al-Sagheer, “Novel epoxy–silica nano-composites using epoxy-modified silicahyper-branched structure”, Progress in Organic Coatings, Vol. 80 (1): 65-70, 2015.
    81. Jin gang Liu, Mitsuru Ueda, “High refractive index polymers: fundamental research and practical applications”, Journal of Materials Chemistry, Vol. 19 (47): 8907-8919, 2009.
    82. Long Hua Lee, Wen Chang Chen, “High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)-Titania Materials”, Chemistry of Materials, Vol. 13 (3): 1137-1142, 2001.
    83. Elizabeth K. Abraham, Anju Francis, P. Ramesh, Roy Joseh, “Synthesis of Calcium-Containing Methacrylate Resin”, Journal of Applied Polymer Science, Vol. 82 (9): 2342-2346, 2001.
    84. Changli Lu, Zhan chen Cui, Cheng Guan, Jing qi Guan, Bai Yang, Jia cong Shen, “Research on Preparation, Structure and Properties of TiO2/Polythiourethane Hybrid Optical Films with High Refractive Index”, Macromolecular Materials and Engineering, Vol. 288 (9): 717-723, 2003.
    85. Cheng Guan, Chang Li Lu, Yi-Fei Liu, Bai Yang, “Preparation and Characterization of High Refractive Index Thin Films of TiO2/Epoxy Resin Nanocomposites”, Journal of Applied Polymer Science, Vol. 102 (2): 1631-1636, 2006.
    86. M. Sangermano, B. Voit, F. Sordo, K. J. Eichhorn, G. Rizza, “High refractive index transparent coatings obtained via UV/thermal dual-cure process”, Polymer, Vol. 49 (8): 2018-2022, 2008.
    87. Joseph Lik Hang Chau, Chun Ting Tung, Yu Ming Lin, Ai Kang Li, “Preparation and optical properties of titania/epoxy nanocomposite coatings”, Materials Letters, Vol. 62 (19): 3416-3418, 2008.
    88. Ying He, Jun An Wang, Chang Long Pei, “Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs”, Journal of Nanoparticle Research, Vol. 12 (8): 3019-3024, 2010.
    89. Peng Tao, Yu Li, Atri Rungta, Anand Viswanath, Jia ning Gao, Brian C. Benicewicz, Richard W. Siegel, Linda S. Schadler, “TiO2 nanocomposites with high refractive index and transparency”, Journal of Materials Chemistry, Vol. 21 (46): 18623-18629, 2011.
    90. Shimpei Kudo, Koichi Nagase, Shoichi Kubo, Okihiro Sugihara, Masaru Nakagawa, “Optically Transparent and Refractive Index-Tunable ZrO2/Photopolymer Composites Designed for Ultraviolet Nanoimprinting”, The Japan Society of Applied Physics, Vol.90 (6S): 06GK12-1- 06GK12-7, 2011.
    91. Pao Tang Chung, Chun Ting Yang, Sho Hsun Wang, Chien Wei Chen, Anthony S.T. Chiang, Cheng Yi Liu, “ZrO2/epoxy nanocomposite for LED encapsulation”, Materials Chemistry and Physics, Vol. 136 (2-3): 868-876, 2012.
    92. Ozawa, T., “Kinetic Analysis of derivative curves in thermal analysis”, Journal of Thermal Analysis and Calorimetry, Vol. 2 (3): 301-324, 1970.
    93. Kissinger, H. E., “Reaction Kinetic in Differential Thermal Analysis”, Analytical Chemistry, Vol. 29 (11): 1702-1706, 1957.
    94. 胡蒨傑, “PAS 檢測技術之原理與應用”, 工業材料雜誌, 289期, 1月號, P.47-55, 2011.
    95. 羅聖全,胡蒨傑, 陳蓉萱, 林麗娟, “PALS與EM檢測技術在奈米複合材料之應用”, 工業材料雜誌, 289期, 1月號, P.56-65, 2011.
    96. B. Wang, W. Gong, W.H. Liu, Z.F. Wang, N. Qi, X.W. Li, M.J. Liu, S.J. Li, “Influence of physical aging and side group on the free volume of epoxy resins probed by positron”, Polymer, Vol. 44 (14): 4047-4052, 2003.
    97. B. Wang,, N. Qi, W. Gong, X.W. Lia, Y.P. Zhen, “Study on the microstructure and mechanical properties for epoxy resin/montmorillonite nanocomposites by positron”, Radiation Physics and Chemistry, Vol. 76 (2): 146-149, 2007.
    98. J. Asaad, E. Gomaa, I.K. Bishay, “Free-volume properties of epoxy composites and its relation to macrostructure properties”, Materials Science and Engineering A, Vol. 490 (1): 151-156, 2008.
    99. J. A. Ramos, M. Larranagaa, I. Mondragona, W. Salgueiro, A. Somoza, S. Goyanes, G. H. Rubiolo, “Correlation between nanohole volume and mechanical properties of amine-cured epoxy resin blended with poly(ethylene oxide)”, Polymer Advanced Technology, Vol. 20 (1): 35-38, 2009.
    100. Zhen li Gong, Xiao li Yan, Jing Gong, Jun jun Wang, Bo Wang, “Investigation of Free Volume and Damping Property for Polycarbonate/Multiwalled Carbon Nanotube Composites by Positron Annihilation Technology”, Journal of Applied Polymer Science, Vol. 125 (5): 4028-4033, 2012.
    101. Rui Chin Ong, Tai Shung Chung, Bradley J. Helmer, Jos. S. de Wit, “Characteristics of water and salt transport, free volume and their relationship with the functional groups of novel cellulose esters”, Polymer, Vol. 54 (17): 4560-4569, 2013.
    1. S.M. He, B. Zhang, N. Li, S.S. Liu, T. Zhang, W. Lu, "Junction temperature measurement on light-emitting diodes and its application". Proceedings of SPIE- The International Society for Optical Engineering, Vol: 7518, 2009.
    2. Yasumasa Morita, "Cationic polymerization of hydrogenated bisphenol-a glycidyl ether with cycloaliphatic epoxy resin and its thermal discoloration". Journal of Applied Polymer Science, Vol. 97 (3): 1395-1400, 2005.
    3. N. Narendran, Y. Gu, J.P. Freyssinier, H. Yu, L. Deng, "Solid-state lighting: Failure analysis of white LEDs". Journal of Crystal Growth, Vol. 268 (3-4): 449-456, 2004.
    4. C.F. Canto, L.A.S. de A. Prado, E. Radovanovic, I.V.P. Yoshida, " Organic-inorganic hybrid materials derived from epoxy resin and polysiloxanes: Synthesis and characterization". Polymer Engineering and Science, Vol. 48 (1): 141-148, 2008.
    5. Shyue Tzoo Lin, Steve K. Huang, "Synthesis and impact properties of siloxane-DGEBA epoxy copolymers". Journal of Polymer Science, Part A: Polymer Chemistry, Vol. 34 (10): 1907-1922, 1996.
    6. Songqi Ma, Weiqu Liu, Zhengfang Wang, Chaohui Hu, Chunyi Tang, "Simultaneously Increasing Impact Resistance and Thermal Properties of Epoxy Resins Modified by Polyether-Grafted-Epoxide Polysiloxane". Polymer - Plastics Technology and Engineering, Vol. 49 (5): 467-473, 2010.
    7. JIANGDONC TONG, RUKE BAI, YINCFANC ZOU, CAIYUAN PAN, SHlCEKl ICHIMURA, "Flexibility improvement of epoxy resin by using polysiloxanes and their derivatives". Journal of Applied Polymer Science, Vol. 52 (10): 1373-1381, 1994.
    8. Songqi Ma, Weiqu Liu, Zhengjie Wei, HONGJING LI , "Mechanical and thermal properties and morphology of epoxy resins modified by a silicon compound". Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 47 (11): 1084-1090, 2010.
    9. M. Gonzalezb, P. Kadleca, P. Stepaneka, A. Strachotaa, L. Matejka, "Crosslinking of epoxy-polysiloxane system by reactive blending". Polymer, Vol. 45 (16): 5533-5541, 2004.
    10. S.S Lee, S.C. Kim, "Physical aging of polydimethyl- siloxane modified epoxy resin". Journal of Applied Polymer Science, Vol. 69 (7): 1291-1300, 1998.
    11. Sheng Shu Hou, Yen Pin Chung, Cheng Kuang Chan, Ping Lin Kuo, "Function and performance of silicone copolymer. Part IV. Curing behavior and characterization of epoxy-siloxane copolymers blended with diglycidyl ether of bisphenol-A". Polymer, Vol. 41 (9): 3263-3272, 2000.
    12. J.C. Cabanelas, B. Serrano, M.G. Gonzalez, J. Baselga, "Confocal microscopy study of phase morphology evolution in epoxy/polysiloxane thermosets". Polymer, Vol. 46 (17): 6633-6639, 2005.
    13. Joon Soo Kim, Seung Cheol Yang, Byeong Soo Bae, "Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation". Chemistry of Materials, Vol. 22 (11): 3549-3555, 2010.
    14. Yasumasa Morita, Seitarou Tajima, Hiroshi Suzuki, Hiroaki Sugino, "Cationic copolymerization of epoxy siloxane monomer with liquid poly-butadiene and its light emitting diode encapsulation". Journal of Applied Polymer Science, Vol. 109 (3): 1808-1813, 2008.
    15. Seung Cheol Yang, Joon Soo Kim, Jung Ho Jin, SeungYeon Kwak, Byeong Soo Bae, "Thermal resistance of cycloaliphatic epoxy hybrimer based on sol-gel derived oligosiloxane for LED encapsulation". Journal of Applied Polymer Science, Vol. 117 (4): 2140-2145, 2010.
    16. Kai Chi Chen, Chia Wen Hsu, Hsun Tien Li, "The study of thermal resistant enhancement of siloxane-modified LED transparent encapsulants". Materials Research Society Symposium Proceedings, Vol. 1007: 3-27, 2008.
    17. Wei Huang, Ying Zhang, Yunzhao Yu, Youxue Yuan, "Studies on UV-stable silicone-epoxy resins". Journal of Applied Polymer Science, Vol. 104 (6): 3954-3959, 2007.
    18. Yuan Qing Li, Yang Yang, Shao Yun Fu, "Photo-stabilization properties of transparent inorganic UV-filter/epoxy nanocomposites". Composites Science and Technology, Vol. 67 (15-16): 3465-3471, 2007.
    19. Yanfang Liu, Zhongjie Du, Chen Zhang, Congju Li, Hangquan Li, "Curing behavior and thermal properties of multifunctional epoxy resin with methylhexahydrophthalic anhydride". Journal of Applied Polymer Science, Vol. 103 (3): 2041-2048, 2007.
    20. Norman Grassie, Marilyn I. Guy, "Degradation of Epoxy Polymers: 2-Mechanism of Thermal Degradation of Bisphenol-A Diglycidyl Ether". Polymer Degradation and Stability, Vol. 13 (1): 11-20, 1985.
    21. Norman Grassie, Marilyn I. Guy, Norman H. Tennent, "Degradation of Epoxy Polymers: Part 1- Products of Thermal Degradation of Thermal Degradation of Disphenol-A Diglycidyl Ether". Polymer Degradation and Stability, Vol. 12 (1): 65-91, 1985.
    22. Kevin P. Menard, "Dynamic Mechanical Analysis: A Practical Introduction" 1999: CRC.
    23. Sender C, Dantras E, Dantras-Laffont L, Lacoste MH, Dandurand J, Mauzac M, Lacout JL, Lavergne C, Demont P, Bernès A, Lacabanne C, "Dynamic mechanical properties of a biomimetic hydroxyapatite/polyamide 6,9 nanocomposite". Journal of Biomedical Materials Research - Part B Applied Biomaterials, Vol. 83 (2): 628-635, 2007.
    24. Hongzhi Liu, Sixun Zheng , Kangming Nie, "Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane". Macromolecules, Vol. 38 (12): 5088-5097, 2005.
    25. Arthur Bobovitch, Emmanuel Gutman, Sven Henning, Goerg H. Michler, "Morphology and Stress Relaxation in Oriented Polyolefin Shrink Films". Journal of Applied Polymer Science, Vol. 90 (12): 3424-3429, 2003.
    26. C. Hedesiu, D. E. Demco, R. Kleppinger, G. Vanden Poel, W. Gijsbers,B. Blu1mich, K. Remerie, V. M. Litvinov, "Effect of temperature and annealing on the phase composition, molecular mobility, and the thickness of domains in isotactic polypropylene studied by proton solid-state NMR, SAXS, and DSC". Macromolecules, Vol. 40 (11): 3977-3989, 2007.
    27. S. Rastogi, A. B. Spoelstra, J. G. P. Goossens, P. J. Lemstra, "Chain mobility in polymer systems: On the borderline between solid and melt. 1. Lamellar doubling during annealing of polyethylene". Macromolecules, Vol. 30 (25): 7880-7889, 1997.
    28. Atsushi Kato, Maiko Nishioka, Youhei Takahashi, Toshiya Suda, Hisahiro Sawabe, Ayano Isoda, Olga Drozdova, Toshinori Hasegawa, Toshihiro Izumi, Kazuya Nagata, Shigeki Hikasa, Hitoshi Iwabuki, Atsushi Asano, "Phase separation and mechanical properties of polyketone/polyamide polymer alloys", Journal of Applied Polymer Science. Vol. 116 (5): 3056-3069, 2010.
    29. Tom, J. Savenije, Jessica E.Kroeze, Xiaoniu Yang, Joachim Loos, "The effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene-fullerene bulk heterojunction". Advanced Functional Materials, Vol. 15 (8): 1260-1266, 2005.
    30. Adam Strachota, Paul Whelan, Jirı Krız, Jirı Brus, Martina Urbanov, Miroslav Slouf, Libor Matejka, "Formation of nanostructured epoxy networks containing polyhedral oligomeric silsesquioxane (POSS) blocks". Polymer, Vol. 48 (11): 3041-3058, 2005.
    31. ASSIST recommends: LED Life for General Lighting: Definition of Life, 2005, Alliance for Solid-State Illumination Systems and Technologies (ASSIST).
    32. G. Zaeschmar, R.S. Speer, "Mechanical‐stress‐induced degradation in homojunction GaAs LED’s ". Journal of Applied Physics, Vol. 50 (9): 5686-5690, 1979.
    33. Shih Chun Yang, Pang Lin, ChienPing Wang, Sheng Bang Huang, Chiu Ling Chen, Pei Fang Chiang, An Tse Lee, Mu Tao Chu, "Failure and degradation mechanisms of high-power white light emitting diodes". Microelectronics Reliability, Vol. 50 (7): 959-964, 2010.
    1. Ying Zhang, Xin Yang, Xiaojuan Zhao, Wei Huang, “Synthesis and properties of optically clear silicone resin/epoxy resin hybrids”, Polymer International, Vol. 61 (2): 294-300, 2012
    2. Seung Cheol Yang, Joon Soo Kim, Jung Ho Jin, Seung Yeon Kwak, Byeong Soo Bae, “Cycloaliphatic Epoxy Oligosiloxane-Derived Hybrid Materials for a High-Refractive Index LED Encapsulant”, Journal of Applied Polymer Science, Vol. 122 (4): 2478-2485, 2011.
    3. Seung Cheol Yang, Joon Soo Kim, Jung Ho Jin, Seung Yeon Kwak, Byeong Soo Bae, “Synthesis and Characterization of Nano-Sized Epoxy Oligosiloxanes for Fabrication of Transparent Nano Hybrid Materials”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 47 (8): 756-763, 2009
    4. Chia-Wen Hsu, Chen Chi M. Ma, Chung-Sung Tan, Hsun Tien Li, Shu Chen Huang, Tzong Ming Lee, Hsin Tai, “Effect of thermal aging on the optical, dynamic mechanical, and morphological properties of phenylmethylsiloxane-modified epoxy for use as an LED encapsulant”, Materials Chemistry and Physics, Vol. 134 (2-3): 789-796, 2012
    5. Thomas M. Murphy, B.D. Freeman, D.R. Paul, “Physical aging of polystyrene films tracked by gas permeability”, Polymer, Vol. 54 (2): 873-880, 2013.
    6. Jun Luo, Yongri Liang, Jian Yang, Hui Niu, Jin Yong Dong, Charles C. Han, “Effect of physical aging on the shape-memory behavior of amorphous networks”, Polymer, Vol. 53 (12): 2453-2464, 2012.
    7. Golovchak R, Ingram A, Kozyukhin S, Shpotyuk O, “Free volume fragmentation in glassy chalcogenides during natural physical ageing as probed by PAL spectroscopy”, Journal of Non-Crystalline Solids Vol. 377: 49-53, 2013.
    8. Virginie M. Boucher, Daniele Cangialosi b, Angel Alegrìa, Juan Colmenero, Juan González-Irun, Luis M. Liz Marzan, “Physical aging in PMMA/silica nanocomposites: Enthalpy and dielectric relaxation”, Journal of Non-Crystalline Solids, 357 (2): 605-609, 2011.
    9. G. M. Odegard, A. Bandyopadhyay, “Physical Aging of Epoxy Polymers and Their Composites”, Journal of Polymer Science Part B: Polymer Physics, Vol. 49 (24): 695‐1716, 2011.
    10. Yong Ni, Sixun Zheng, “Nanostructured Thermosets from Epoxy Resin and an Organic-Inorganic Amphiphile”, Macromolecules Vol. 40 (19): 7009-7018, 2007.
    11. Hongbin Lu, Steven Nutt, “Restricted Relaxation in Polymer Nanocomposites near the Glass Transition”, Macromolecules Vol. 36 (11): 4010-4016, 2003.
    12. Brandon W. Rowe, Steven J. Pas, Anita J. Hill, Ryoichi Suzukic, Benny D. Freeman, D.R. Paul, “A variable energy positron annihilation lifetime spectroscopy study of physical aging in thin glassy polymer films”, Polymer, Vol: 50 (25): 6149-6156, 2009.
    13. D. Kilburn, G. Dlubek, J. Pionteck, M.A. Alam, “Free volume in poly(n-alkyl methacrylate)s from positron lifetime and PVT experiments and its relation to the structural relaxation”, Polymer, Vol. 47 (22): 7774-7785, 2006
    14. William J. Davis, Richard A. Pethrick, “POSITRON ANNIHILATION STUDIES OF PHYSICAL AGEING IN POLYCARBONATE”, European Polymer Journal, Vol. 34 (12): 1747-1754, 1998
    15. J. M. RAJ, C. RANGANATHAIAH, “A New Method of Stabilization and Characterization of the Interface in Binary Polymer Blends by Irradiation: A Positron Annihilation Study”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 47 (6): 619–632, 2009
    16. Ywu Jang Fua, Sheng Wen Hsiaoc, Chien Chieh Hub, Kueir Rarn Leec, Juin Yih Laic, “Prediction of long-term physical aging of Poly(methyl methacrylate) membranes for gas separation”, Desalination, Vol. 2349 (1): 51-57, 2008.
    17. PM Sathyanarayana, Gani Shariff, C Thimmegowda, MB Ashalatha,R Ramani, C. Ranganathaiah, “Structural relaxation in poly(ethylene terephthalate) studied by positron annihilation lifetime spectroscopy”, Polymer International, Vol. 51 (9):765-771, 2002.
    18. William J. Davis, Richard A. Pethrick, “Positron Annihilation Studies of Ageing in Polystyrene”, Polymer International, Vol. 45 (4): 395-402, 1998.
    19. Heitor Luiz Ornaghi Jr., Humberto Sartori Pompeoda Silva, Ademir Jose Zatterab, Sandro Campos Amico, “Hybridization effect on the mechanical and dynamic mechanical properties of curaua composites”, Materials Science and Engineering A, Vol 528 (24): 7285– 7289, 2011.
    20. S. A. PELLICE, D. P. FASCE, R. J. J. WILLIAMS, “Properties of Epoxy Networks Derived from the Reaction of Diglycidyl Ether of Bisphenol A with Polyhedral Oligomeric Silsesquioxanes Bearing OH-Functionalized Organic Substituents”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 41 (13): 1451–1461, 2003
    21. Xiao Shui Wang, Hyun Kyoung Kim, Yukihiro Fujita, Atsushi Sudo, Haruo Nishida, Takeshi Endo, “Relaxation and Reinforcing Effects of Polyrotaxane in an Epoxy Resin Matrix”, Macromolecules, Vol 39 (3): 1046-1052, 2006.
    22. G. M. Odegard, A. Bandyopadhyay, “Physical Aging of Epoxy Polymers and Their Composites”, Journal of polymer science part B: Polymer physics, Vol.49 (24): 1695–1716, 2011.
    23. V. Sauvant1, J.L. Halary, “Improvement of the performance of epoxy-amine thermosets by antiplasticizer-induced nano-scale phase separation during cure”, Composites Science and Technology, Vol 62 (4): 481–486, 2002.
    24. V.A. Bershteina, N.N. Peschanskayaa, J.L. Halaryb, L. Monnerie, “The sub-Tg relaxations in pure and antiplasticized model epoxy networks as studied by high resolution creep rate spectroscopy”, Polymer, Vol 40 (24): 6687–6698, 1999.
    25. L. Heux, F. Lauprtre, J. L. Halary, L. Monnerie, “Dynamic mechanical and 13C n.m.r. analyses of the effects of antiplasticization on the β secondary relaxation of aryl-aliphatic epoxy resins”, Polymer, Vol 39 (6-7): 1269-1278, 1998.
    26. Pushkar N. Patil, Sangram K. Rath, Sandeep K. Sharma, K. Sudarshan, P. Maheshwari, M. Patri, S. Praveen, P. Khandelwal, Pradeep K. Pujari, “Free volume and structural relaxations in diglycidyl ether of bisphenol-A based epoxy-polyether amine networks”, Soft Matter, Vol 9 (13): 3589-3599, 2013.
    27. Kevin P. Menard, "Dynamic Mechanical Analysis: A Practical Introduction" 1999: CRC.
    28. H. Cao, J.-P. Yuan, R. Zhang, C.-M. Huang, Y. He, T. C. Sandreczki, Y. C. Jean, “Degradation of Polymer Coating Systems Studied by Positron Annihilation Spectroscopy. 3. Wavelength Dependence of UV Irradiation Effect”, Macromolecules, Vol 32 (18): 5925-5933, 1999.
    29. W. Salgueiro, J. Ramos, A. Somoza, S. Goyanes, I. Mondragon, “Nanohole volume dependence on the cure schedule in epoxy thermosetting networks: A PALS study”, Polymer, Vol: 47 (14): 5066–5070, 2006
    30. Hamdy F.M. Mohamed, A.M.A. El-Sayed, Gomaa G. Abd-Elsadek, “Effect of temperature on ortho-positronium in poly(methyl methacrylate)”, Polymer Degradation and Stability, Vol 71 (1): 93-97, 2001.
    31. Ananyo Bandyopadhyay, Gregory M. Odegard, “Molecular Modeling of Physical Aging in Epoxy Polymers”, Journal of Applied Polymer Science, Vol 128 (1): 660-666, 2013.
    32. F. Fraga, P. Payo, E. Rodrıguez Nunz, J. M. Martınez Ageitos, C. Castro Dız, “Comparative Study of the Physical Aging of the Epoxy Systems BADGE n = 0/m-XDA and BADGE n = 0/m-XDA/PEI”, Journal of Applied Polymer Science, Vol 103 (6): 3931-3935, 2007.
    33. J.-F. Shi, P. T. Inglefield, A. A. Jones, M. D. Meadows, “Sub-Glass Transition Motions in Linear and Cross-Linked Bisphenol-Type Epoxy Resins by Deuterium Line Shape NMR”, Macromolecules, Vol 29 (2): 605-609, 1996.
    34. B. Wanga, W. Gong, W.H. Liu, Z.F. Wang, N. Qi, X.W. Li, M.J. Liu, S.J. Li, “Influence of physical aging and side group on the free volume of epoxy resins probed by positron”, Polymer, Vol 44 (14): 4047–4052, 2003.
    1. Haixia Wu, Changhua Liu, Jianguang Chen, Yajuan Yang and Yun Chen, “Preparation and characterization of chitosan/α-zirconium phosphate nanocomposite films”, Polymer International, Vol. 59 (7): 923-930, 2010.
    2. M. Ranjbar, M. Yousefi, M. Lahooti and A. Malekzadeh, “Preparation and Characterization of Tetragonal Zirconium Oxide Nanocrystals from Isophthalic Acid-Zirconium (IV) Nanocomposite As a New Precursor”, International Journal of NanoScience and Nanotechnology, Vol.8: 191-196, 2012.
    3. Pao Tang Chung, Chun Ting Yang, Sho Hsun Wang, Chien Wei Chen, Anthony S.T. Chiang, and Cheng-Yi Liu, “ZrO2/epoxy nanocomposite for LED encapsulation”, Materials Chemistry and Physics, Vol.136: 868-876, 2012.
    4. Peng Tao, Ying Li, Richard W. Siegel and Linda S. Schadler, “Transparent Dispensible High-Refractive Index ZrO2/Epoxy Nanocomposites for LED Encapsulation”, Journal of Applied Polymer Science, DOI: 10.1002/app.39652, 2013.
    5. Renata Batista Rivero Garcia, Fábio Santos da Silva and Elizabete Yoshie Kawachi, “New sol–gel route for SiO2/ZrO2 film preparation”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 436: 484-488, 2013.
    6. V. Santos, M. Zenl, C.P. Bergmann and J.M.Hohemberger, “Correlation between thermal treatment and tetragonal/monoclinic nanostructured zirconia powder obtained by sol-gel process”, Review on Advanced Materials Science, Vol. 17: 62-70, 2008.
    7. Mehmet Copuroglu, Shane O’Brien and Gabriel M. Crean, “Effect of preparation conditions on the optical and physical properties of an epoxy-functional inorganic-organic hybrid material system”, Journal of Sol-Gel Science and Technology, Vol. 40: 75–82, 2006.
    8. Wan Ahmad Kamil Mahmood, Mohammad Mizanur Rahman Khan and Mohammad Hossein Azarian, “Sol-gel synthesis and morphology, thermal and optical properties of epoxidized natural rubber-zirconia hybrid films”, Journal of Non-Crystalline Solids, Vol. 378: 152–157, 2013.
    9. Jun Young Bae, Seung Cheol Yang, Jung Ho Jin, KyungHo Jung ,Joon Soo Kim and Byeong-Soo Bae, “Fabrication of transparent methacrylate zirconium siloxane hybrid materials using sol–gel synthesized oligosiloxane resin”, Journal of Sol-Gel Science and Technology, Vol. 58: 114-120, 2011.
    10. Haitao Wang, Peng Xu, Wei Zhong, Liang Shen and Qiangguo Du, “Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities”, Polymer Degradation and Stability, Vol. 87: 319-327, 2005.
    11. Sirarat Kongwudthitia, Piyasan Praserthdama, Waraporn Tanakulrungsank, Masashi Inoue, “The influence of Si–O–Zr bonds on the crystal-growth inhibition of zirconia prepared by the glycothermal method”, Journal of Materials Processing Technology, Vol. 136: 186-189, 2003.
    12. Shu Fen Wang, Feng Gu, Meng Kai Lü, Zhong Sen Yang, Guang Jun Zhou, Hai Ping Zhang, YuanYuan Zhou and Shu Mei Wang, “Structure evolution and photoluminescence properties of ZrO2:Eu3+ nanocrystals” Optical Materials, Vol. 28: 1222-1226, 2006.
    13. Mitsukazu Ochi, Daisuke Nii, Yasufumi Suzuki and Miyuki Harada, “Thermal and optical properties of epoxy/zirconia hybrid materials synthesized via in situ polymerization”, Journal of Materials Science, Vol. 45: 2655–2661, 2010.
    14. Chich Haw Lin, Shu Chen Huang and Hsun Tien Li, “Transparent silicone epoxy composition”, US patent, No. 8440774, 2013.
    15. Guang Hua Yi and Michael Sayer, “An acetic acid/water based sol-gel PZT process I: Modification of Zr and Ti alkoxides with acetic acid”, Journal of Sol-Gel Science and Technology, Vol.6: 65-74, 1996.
    16. H. El Rassy and A.C. Pierre, “NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics”, Journal of Non-Crystalline Solids, Vol. 351: 1603-1610, 2005.
    17. Y. Cao and W. Hea, “Water-soluble antioxidant derivative poly(triethylene glycol methyl acrylate-co-a-tocopheryl acrylate) as a potential prodrug to enable localized neuroprotection”, Acta Biomaterialia, Vol. 9: 4558-4568, 2013.
    18. Yuanjing Cui, Minquan Wang, Lujian Chen and Guodong Qian, “Synthesis and spectroscopic characterization of an alkoxysilane dye containing C. I. Disperse Red”, Dyes and Pigments, Vol. 62: 43-47, 2004.
    19. Shougang Chen, Yansheng Yin, Daoping Wang, Yingcai Liu and Xin Wang, “Structures, growth modes and spectroscopic properties of small zirconia clusters”, Journal of Crystal Growth, Vol. 282: 498–505, 2005.
    20. Gert von Helden, Andrei Kirilyuk, Deniz van Heijnsbergen,Boris Sartakov, Michael A. Dunca and Gerard Meijer, “Infrared spectroscopy of gas-phase zirconium oxide clusters”, Chemical Physics, Vol. 262: 31-39, 2000.
    21. Felora Heshmatpour and Reza Babadi Aghakhanpour, “Synthesis and characterization of nanocrystalline zirconia powder by simple sol-gel method with glucose and fructose as organic additives” Powder Technology, Vol. 205: 193-200, 2011.
    22. K. Yamada, T.Y. Chow, T. Horihata and M. Nagata, “A low temperature synthesis of zirconium oxide coating using chelating agents”, Journal of Non-crystalline Solids, Vol. 100: 316-320, 1988.
    23. Hiroaki Hayashi, “Effect of chemical modification on hydrolysis and condensation reaction of zirconium alkoxide”, Journal of Sol-Gel Science and Technology, Vol. 12: 87-94, 1998.
    24. María González González, Juan Carlos Cabanelas, Javier Pozuelo and Juan Baselga, “Preparation of cycloaliphatic epoxy hybrids with non-conventional amine-curing agents”, Journal of Thermal Analysis and Calorimetry, Vol.103 (2): 717-723, 2011.
    25. Songqi Ma, Weiqu Liu, Yuan Zhao, Zhenlong Yan and Nan Gao, “Curing behaviour and thermal properties of autocatalytic cycloaliphatic epoxy”, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol.49 (1): 81-84, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE