研究生: |
謝旻軒 Hsieh, Min-Hsuan |
---|---|
論文名稱: |
Some Remarks On Korenblum Conjecture 柯倫步猜想的一些探討 |
指導教授: |
程守慶
Chen, So-Chin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 19 |
中文關鍵詞: | 柯倫步猜想 |
外文關鍵詞: | Korenblum Conjecture |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this article, we are interested in the theorem which proved by Korenblum, O'neil, Richards, and Zhu. They prove the Korenblum conjecture when either f or g is a monomial.
So we discuss some special cases from above.
[1] B. Korenblum, A maximum prinple for the Bergman space, Publ. Math.35(1991), 479-486.
[2] W. K. Hayman, On a conjecture of Korenblum, Analysis 19(1999),195-205.
[3] A. Hinkkanen, On a maximum prinple in the Bergman space, Mathe-matique 79(1999), 335-344.
[4] B. Korenblum, R. O'neil, K. Richards, and K. Zhu, Totally monotonefunctions with applications to the Bergman space, Trans. Amer. Math.Soc. 337(1993), 795-806.
[5] B. Korenblum, Transformation of zero sets by contractive operators in the Bergmanspace, Bulletin des Sciences Mathematiques, 2e serie,114(1990), 395-394.
[6] A. Schuster, The maximum principle for the Bergman space and the mÄobius pseudodistance for the annulus, Proc. Amer. Math.Soc.134(2006), 3525-3530.
[7] C.Wang, Re‾ning the constant in a maximum principle for the Bergman space, Proc. Amer. Math. Soc. 132(2004), 853-855.
[8] C. Wang, An upper bound on Korenblums constant, Integr. Equ. Oper.Theory, 49(2004), 561-563.
[9] C. Wang, On Korenblum's constant, J. Math. Anal. Appl. 296(2004),262-264.
[10] C. Wang, On Korenblum maximum principle, Proc. Amer. Math. Soc.134(2006), 2061-2066.
[11] C. Shen, A slight improvement to Korenblum's constant, J. Math. Anal.Appl. 337(2008), 464-465.
[12] C. Wang, Behavior of the constant in Korenblum's maximum principle,Math. Nachr. 281(2008), 447-454
[13] C. Wang, Domination in the Bergman space and Korenblum's constant,Integr. Equ. Oper. Theory, 61(2008), 423-432.
[14] S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math.52(1929), 1-66.
[15] W. Rudin, Real and complex analysis, McGraw-Hill, New York(1987).
[16] R. Narasimhan, Complex analysis in one variable, University of Chicago,(1971).