研究生: |
黃鼎峻 Huang, Ding-Jyun |
---|---|
論文名稱: |
改質奈米碳管紙製備可撓及堆疊式超級電容之研究 Characterization of modified carbon nanotubes papers made flexible and piled supercapacitors |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: |
連德軒
Lien, Der-Hsien 許景棟 Hsu, Wen-Kuang 薛森鴻 Syue, Sen-Hong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 奈米碳管 、可撓姓 、超級電容 、氮摻雜 、離子液體 、奈米複合材料 、堆疊結構 |
外文關鍵詞: | carbon nanotubes, flexible, supercapacitor, N-doped, ionic liquid, nanocomposites, stacked configuration |
相關次數: | 點閱:37 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究試圖開發以多壁奈米碳管紙為電極之超級電容,並利用多種方式提升其性能。在電極方面以鹽活化和氮摻雜熱處理的方式處理奈米碳管,製作出具有高比表面積和電性的碳管紙;在電解質方面,選擇使用高濃度醋酸鉀為電解質(water in solute, WIS),可提供較高的工作電壓,以濾紙作為分隔層去吸滿電解質後封裝成三明治超級電容。由循環伏安法二極式測得的比電容為 13 F/g,相較於未處理的碳管紙超級電容,其比電容可以提升1.67倍。此外經過 3000 次循環伏安法測試後,仍保有 94 %的優異比電容維持率。最後搭配多層堆疊的組合方式組裝超級電容,可再次提升電壓和電容。
最後將封裝好後的超級電容作串聯,將其充電十秒後再接至小馬達上,可以成功讓它運轉,可說明不需要耗費繁複的製程和高額的成本,也能製作出具有一定效能且輕、薄、可撓式超級電容。
This research attempts to develop flexible supercapacitors using composites made from modified multi-walled carbon nanotubes and paper fibers as electrodes. Various methods are employed to improve electrochemical performance of carbon nanotubes, including salt activation and nitrogen-doping, in conjunction with concentrated potassium acetate as electrolyte and filter paper as dielectric layers to promote working voltage. Composites are piled and packed into sandwiched structures and electrochemical measurements reveal retention and specific capacitance to be 94% over 3000 cycles and 13F/g; value which is a factor of 1.67 greater than untreated electrodes. Charging of supercapacitors connected in series for 10 s gives a sufficient power capable of driving electric motors. Supercapacitors made here display advantages including low cost production, processing with ease, flexible and eco-friendly.
[1] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature., 354(6348), p.56-58.
[2] WTBZHenning TH, Salama F. Science. 1998, 282: 2204
[3] 成會明,奈米碳管,初版,五南出版社,2004
[4] 金子克美.固體物理(日文)。1992, 27: 403
[5] 楊全紅.奈米碳管表面、孔隙及其與儲氫性能關係 :[博士後工作報告].瀋陽:中國科學院金屬研究所,2001
[6] Hamada N, Sawada SI, Oshiyama A. phys Rev Lett. 1992, 68:1579
[7] Dresselhaus MS, Eklund PC. Adv Phys. 2000, 49: 705
[8] Saito R, Dresselhaus G, Dresselhaus MS. J Appl Phys. 1993,73: 494
[9] 戴貴平,劉敏,王茂章等。新型碳材料。2002, 17: 71
[10] Sarangapani S, Tilak B, Chen C. J Electrochem Soc. 1996, 143: 3791
[11] Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for
high-rate electrochemical energy storage. Energy & Environmental Science, 7(5),
1597-1614.
[12] Review on supercapacitors: Technologies and materials. Renewable and Sustainable
Energy Reviews. (2016)., 58, 1189-1206.
[13] H. Shi. (1995). Electrochim. Acta., 41, 1633.
[14] UPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, Collid and Surface
Chemistry, Pure Appl. Chem, 31 (1972) 578.
[15] 竹田敏和,遠藤守信。碳素(日)。1999, 189: 179
[16] J. P. Zheng. (1999). Electrochem. Solid-State Lett, 2, 359.
[17] Basha, D.B., Ahmed, S., Ahmed, A., Gondal, M.A.Recent advances on nitrogen
doped porous carbon micro-supercapacitors: New directions for wearable
electronics(2023) Journal of Energy Storage, 60, art. no. 106581.
[18] Mirzaeian, M., Abbas, Q., Ogwu, A., Hall, P., Goldin, M., Mirzaeian, M., Jirandehi,
H.F.Electrode and electrolyte materials for electrochemical capacitors
(2017) International Journal of Hydrogen Energy, 42 (40), pp. 25565-25587.
[19] Samanta, P., Ghosh, S., Kundu, A., Samanta, P., Murmu, N. C., & Kuila, T. (2022). A
strategic way of high-performance energy storage device development with
environmentally viable “Water-in-salt” electrolytes. Journal of Energy Chemistry.
[20] 於鵬, & 楊仁剛. (2014). 超級電容串聯儲能系統的並聯電容均壓方法. 農業工程
學報, 30(24), 133-140.
[21] J. Bard, L. R. Faulkner. (1980). Electrochemical Methods Fundamental and
Application. John Wiley & Sons. Canada.
[22] Gogotsi, Y., & Simon, P. (2011). True performance metrics in electrochemical energy
storage. science, 334(6058), 917-918.
[23] Electrochemical Methods Fundamentals and Applications, JOHN WILEY & SONS,
INC, SECOND EDITION. (2001).
[24] Zou, K., Guan, Z., Deng, Y., & Chen, G. (2020). Nitrogen-rich porous carbon in ultra-
high yield derived from activation of biomass waste by a novel eutectic salt for high
performance Li-ion capacitors. Carbon, 161, 25-35.
[25] Lin, D., Qian, O., Huo, D., Pan, Q., Zhang, S., Wang, Z., ... & Wei, B. (2020).
Alternately stacked thin film electrodes for high-performance compact energy storage.
Nano Energy, 78, 105323.A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G.
Dresselhaus and M. S. Dresselhaus. (2003). New Journal of Physics, 5 139,1 139,17.
[26] Hou, P. X.; Orikasa, H.; Yamazaki, T.; Matsuoka, K.; Tomita, A.; Setoyama, N.;
Fukushima, Y.; Kyotani, T. Chem. Mater. 2005, 17, 5187
[27] P. A. Webb and C. Orr, Analytical Methods in Fine Particle Technology, Norcross:
Micromeritics, 53 (1997).
[28] M. Lu, Nanoporous Materials- Science and Engineering,Imperial College Press, 317
(2004).
[29] Eduardo, C. S.; Florentino, L. U.; Emilio, M. S. ACS Nano 2009, 3, 1913.
[30] van der Pauw, L. J., A method of measuring the resistivity and Hall coefficient on
lamellae of arbitrary shape. 1958.
[31] Chieh-Tsung Lo, Keng-Wei Lin, Tzu-Pei Wang, Sheng-Min Huang, Chien-Liang Lee.
(2021). Differentiating between the effects of nitrogen plasma and hydrothermal
treatment on electrospun carbon fibers used as supercapacitor electrodes.
Electrochimica Acta, Volume 381,138255.