研究生: |
白育齊 Bai, Yu-Chi |
---|---|
論文名稱: |
肝癌細胞吸收硼酸的機制及腫瘤微環境特性對於硼酸吸收的影響探討 Mechanism analysis and effect of tumor microenvironment properties on the uptake of boric acid in human hepatoma HepG2 cells |
指導教授: |
莊永仁
Chuang, Yung-Jen |
口試委員: |
周鳳英
Chou, Fong-In 楊家銘 Yang, Chia-Min |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | 肝癌 、硼中子捕獲治療 、硼酸運輸 、細胞膜通透性 、酸性微環境 |
外文關鍵詞: | Hepatocellular carcinoma, Boron neutron capture therapy, Boric acid transportation, Cell membrane permeability, Acidic microenvironment |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硼中子捕獲治療(Boron neutron capture therapy; BNCT)為一種透過硼10 同位素(10B )受到熱中子撞擊後裂解產生高能的特性,與具有腫瘤選擇性的含硼藥物結合的放射性療法。在現今BNCT 臨床應用中主要以borocaptate(BSH)與borophenylalanine (BPA)作為含硼藥物,並廣泛用於治療黑色素癌、頭頸癌與腦癌。然而過去的研究顯示,BSH 與BPA 侷限於其藥理特性,不適用於肝癌的硼中子捕獲治療。肝癌(Hepatocellular carcinoma, HCC)為世界常見的癌症類形,在亞洲地區肝癌致死率更高居第二名。目前治療肝癌的療法大多不適於多發性與末期肝癌患者。清華大學周鳳英教授團隊於近年發現以硼酸作為BNCT 藥物,在大鼠與兔肝癌模型上有顯著性的腫瘤專一性與治療效果,但硼酸在肝腫瘤中的傳遞與聚積相關機制尚未被完整研究。硼酸為最簡單的含硼化合物,被發現會與醣類結合。硼酸進入人體後在一般狀況下不會被代謝,其傳遞聚積與組織硼酸濃度相關,可透過簡單擴散的方式進入細胞當中。另一方面,許多文獻指出肝腫瘤的細胞特性及微環境與正常組織有所區別,包含醣類代謝、細胞膜組成及酸鹼值。因此,我們於本研究中,系統性的探討硼酸是如何被肝癌細胞所吸收。實驗結果顯示,硼酸主要透過擴散作用的進入癌細胞內,硼酸吸收量與醣類並無顯著關聯性,但可能會受到細胞膜通透性與酸鹼值影響。結合周鳳英教授團隊的動物實驗結果,我們推測肝腫瘤的異常血管床與其高通透性,可能為硼酸累積在肝腫瘤內的主要原因。本研究將有助於未來評估肝癌患者是否適合接受以硼酸為含硼藥物的BNCT 治療,亦有助於硼酸藥物的施放及臨床試驗規劃。
Boron neutron capture therapy (BNCT) is a radiation therapy which utilizes the high-energy particles produced from the nuclear reaction of boron isotope (10B) and thermal neutron to kill cancer cells with selective tumor targeting. However, borocaptate and borophenylalanine which are widely used in clinical studies, are not suitable for treating hepatocellular carcinoma (HCC). HCC is one of the most common cancer types worldwide, with the second highest mortality rate in Asia. The current treatments of HCC include surgical and chemical therapies. Nonetheless, these therapies are not suitable for patients with advance and multifocal HCC. In recent years, Chou, FI et al. found that boric acid showed significant HCC selectivity and efficacy in rat and rabbit liver tumor-bearing models after neutron radiation. However, the mechanism of transportation and accumulation of boric acid in the hepatocellular cells remains unclear. After entering the body, boric acid interacts with carbohydrates, but could not be metabolized in mammals. Previous reports indicated that the characteristics of liver tumor was different from normal liver tissue, including carbohydrates metabolism, cell membrane composition and pH value of tumor microenvironments. In this study, we systematically analyzed how boric acid was absorbed by hepatocellular carcinoma cells. Our results showed that boric acid was mainly transported into cancer cells by simple diffusion. The uptake level of boric acid in liver cancer cells was not associated with the interaction of boric acid and carbohydrates, but might be affected by cell membrane composition and pH value in the microenvironment. Combining with the findings by Chou, FI et al., we proposed that abnormal vasculature and enhanced vascular permeability of liver tumor might explain boric acid’s HCC targeting and selectivity effect. Our findings could help to design clinical trials for patient recruitment and treatment planning for boric acid-mediated BNCT of HCC in the future.
1. Ferlay J, S.I., Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F.,
GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11
[Internet]. International Agency for Research on Cancer, 2013.
2. Colagrande, S., et al., Advanced hepatocellular carcinoma and sorafenib: Diagnosis, indications,
clinical and radiological follow-up. World Journal of Hepatology, 2015. 7(8): p. 1041-1053.
3. Bruix, J. and M. Sherman, Management of hepatocellular carcinoma: an update. Hepatology,
2011. 53(3): p. 1020-2.
4. Sarin, S.K., et al., Asian-Pacific clinical practice guidelines on the management of hepatitis B: a
2015 update. Hepatol Int, 2016. 10(1): p. 1-98.
5. Lin, S., K. Hoffmann, and P. Schemmer, Treatment of Hepatocellular Carcinoma: A Systematic
Review. Liver Cancer, 2012. 1(3-4): p. 144-158.
6. Tabrizian, P., S. Roayaie, and M.E. Schwartz, Current management of hepatocellular carcinoma.
World Journal of Gastroenterology : WJG, 2014. 20(30): p. 10223-10237.
7. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4):
p. 378-90.
8. Wang, L.W., et al., BNCT for locally recurrent head and neck cancer: preliminary clinical
experience from a phase I/II trial at Tsing Hua Open-Pool Reactor. Appl Radiat Isot, 2011. 69(12):
p. 1803-6.
9. Barth, R.F., et al., Current status of boron neutron capture therapy of high grade gliomas and
recurrent head and neck cancer. Radiat Oncol, 2012. 7: p. 146.
10. Suzuki, M., et al., Intra-arterial administration of sodium borocaptate (BSH)/lipiodol emulsion
delivers B-10 to liver tumors highly selectively for boron neutron capture therapy: experimental
studies in the rat liver model. Int J Radiat Oncol Biol Phys, 2004. 59(1): p. 260-6.
11. Wang, H.E., et al., Evaluation of 4-borono-2-18F-fluoro-L-phenylalanine-fructose as a probe for
boron neutron capture therapy in a glioma-bearing rat model. J Nucl Med, 2004. 45(2): p. 302-8.
12. Chou, F.I., et al., Suitability of boron carriers for BNCT: accumulation of boron in malignant and
normal liver cells after treatment with BPA, BSH and BA. Appl Radiat Isot, 2009. 67(7-8 Suppl):
p. S105-8.
13. Briggs, M., Boron Oxides, Boric Acid, and Borates. Kirk-Othmer Encyclopedia of Chemical
Technology. 2001.
14. Misdan, N., W.J. Lau, and A.F. Ismail, Seawater Reverse Osmosis (SWRO) desalination by thinfilm
composite membrane—Current development, challenges and future prospects. Desalination,
2012. 287: p. 228-237.
15. Schmidt, M., Boric Acid Inhibition of Trichophyton rubrum Growth and Conidia Formation. Biol
Trace Elem Res, 2017.
16. Prutting, S.M. and J.D. Cerveny, Boric acid vaginal suppositories: a brief review. Infectious
Diseases in Obstetrics and Gynecology, 1998. 6(4): p. 191-194.
17. Rostkowska, B., L. Pospiech, and M. Jankowska, Vratizolin in treatment of mouth and ear
herpetic infections: comparison with conventional therapy. Arch Immunol Ther Exp (Warsz),
1993. 41(2): p. 137-40.
18. Farr, L.E., et al., Neutron capture therapy of gliomas using boron. Trans Am Neurol Assoc, 1954.
13(79th Meeting): p. 110-3.
19. Asbury, A.K., et al., Neuropathologic study of fourteen cases of malignant brain tumor treated by
boron-10 slow neutron capture radiation. J Neuropathol Exp Neurol, 1972. 31(2): p. 278-303.
20. Lin, S.Y., et al., Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron
neutron capture therapy in a rat model. Anticancer Res, 2013. 33(11): p. 4799-809.
21
21. Yang, C.H., et al., Autoradiographic and histopathological studies of boric acid-mediated BNCT
in hepatic VX2 tumor-bearing rabbits: Specific boron retention and damage in tumor and tumor
vessels. Applied Radiation and Isotopes, 2015. 106: p. 176-180.
22. Murray, F.J., A comparative review of the pharmacokinetics of boric acid in rodents and humans.
Biol Trace Elem Res, 1998. 66(1-3): p. 331-41.
23. Dordas, C. and P.H. Brown, Permeability and the mechanism of transport of boric acid across the
plasma membrane of Xenopus laevis oocytes. Biological Trace Element Research, 2001. 81(2):
p. 127-139.
24. Damaghi, M., J.W. Wojtkowiak, and R.J. Gillies, pH sensing and regulation in cancer. Frontiers
in Physiology, 2013. 4: p. 370.
25. Annibaldi, A. and C. Widmann, Glucose metabolism in cancer cells. Curr Opin Clin Nutr Metab
Care, 2010. 13(4): p. 466-70.
26. Moreno-Sánchez, R., et al., Energy metabolism in tumor cells. FEBS Journal, 2007. 274(6): p.
1393-1418.
27. Pappin, B., M.J. Kiefel, and T.A. Houston, Boron-Carbohydrate Interactions, in Carbohydrates -
Comprehensive Studies on Glycobiology and Glycotechnology. 2012, InTech: Rijeka. p. Ch. 0.
28. Dordas, C. and P.H. Brown, Permeability of boric acid across lipid bilayers and factors affecting
it. J Membr Biol, 2000. 175(2): p. 95-105.
29. Beloribi-Djefaflia, S., S. Vasseur, and F. Guillaumond, Lipid metabolic reprogramming in cancer
cells. Oncogenesis, 2016. 5(1): p. e189.
30. Jiang, J.-t., et al., Lipids changes in liver cancer. Journal of Zhejiang University. Science. B, 2007.
8(6): p. 398-409.
31. Du, J., L.A. Lane, and S. Nie, Stimuli-Responsive Nanoparticles for Targeting the Tumor
Microenvironment. Journal of controlled release : official journal of the Controlled Release
Society, 2015. 219: p. 205-214.
32. Dordas, C., M.J. Chrispeels, and P.H. Brown, Permeability and channel-mediated transport of
boric acid across membrane vesicles isolated from squash roots. Plant Physiol, 2000. 124(3): p.
1349-62.
33. Yamaguchi, T., et al., Effects of pH on membrane fluidity of human erythrocytes. J Biochem,
1982. 91(4): p. 1299-304.
34. Li, Y.C., et al., Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with
apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol, 2006. 168(4): p. 1107-
18; quiz 1404-5.
35. Hsu, C.F., et al., Potential of using boric acid as a boron drug for boron neutron capture therapy
for osteosarcoma. Applied Radiation and Isotopes, 2011. 69(12): p. 1782-1785.
36. de Winter, J.C.F., Using the Student's t-test with extremely small sample sizes. Practical
Assessment, Research & Evaluation, 2013. 18.
37. Wongthai, P., et al., Boronophenylalanine, a boron delivery agent for boron neutron capture
therapy, is transported by ATB(0,+), LAT1 and LAT2. Cancer Science, 2015. 106(3): p. 279-286.
38. Wong, L.C., et al., Boric Acid Poisoning: Report of 11 Cases. Canadian Medical Association
Journal, 1964. 90(17): p. 1018-1023.
39. Hindler, K., et al., The Role of Statins in Cancer Therapy. The Oncologist, 2006. 11(3): p. 306-
315.
40. Ganapathy, V., M. Thangaraju, and P.D. Prasad, Nutrient transporters in cancer: Relevance to
Warburg hypothesis and beyond. Pharmacology & Therapeutics, 2009. 121(1): p. 29-40.
41. Jóźwiak, P., et al., O-GlcNAcylation and Metabolic Reprograming in Cancer. Frontiers in
Endocrinology, 2014. 5: p. 145.
42. Kato, Y., et al., Acidic extracellular microenvironment and cancer. Cancer Cell International,
22
2013. 13(1): p. 89.
43. Leung, C.-Y., et al., Crystalline polymorphism induced by charge regulation in ionic membranes.
Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(41):
p. 16309-16314.
44. Bishop, M., et al., Determination of the mode and efficacy of the cross-linking of guar by borate
using MAS 11B NMR of borate cross-linked guar in combination with solution 11B NMR of
model systems. Dalton Trans, 2004(17): p. 2621-34.
45. Lande, M.B., J.M. Donovan, and M.L. Zeidel, The relationship between membrane fluidity and
permeabilities to water, solutes, ammonia, and protons. J Gen Physiol, 1995. 106(1): p. 67-84.