簡易檢索 / 詳目顯示

研究生: 吳佳璇
Wu, Chia-Hsuan
論文名稱: 長壽債券定價之典型定價法研究-台灣死亡率經驗
Pricing Longevity Bond by Canonical Valuation Approach: the Experience in Taiwan
指導教授: 蔡子晧
Tsai, Tzu-Hao
口試委員: 林子綾
曾祺峰
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 計量財務金融學系
Department of Quantitative Finance
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 35
中文關鍵詞: 長壽風險長壽債券典型定價法拔靴法Wang transform
外文關鍵詞: longevity risk, longevity bond, canonical valuation, bootstrap, Wang transform
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣人口近幾年老化問題益趨嚴重,在亞洲僅次於日本,並且於1993年正式進入聯合國所界定的高齡化社會,如何有效管理高齡化問題已成為各國所重視的議題。在風險管理上,以純粹連結死亡率的死亡率債券(mortality bond)及長壽債券(longevity bond)逐漸受到重視。文獻上針對死亡率連結商品做定價的方式有很多種,為規避其他訂價方式可能產生的模型風險及參數風險,本文嘗試以canonical valuation approach搭配無母數方法預估死亡率對longevity bond進行定價。本研究亦將結果與Wang transform定價結果做比較,希望可以提供長壽債券一個更好的定價方式。


    In recent years, the problem of aging in Taiwan's population is getting worse, which is second only to Japan in Asia. Besides, Taiwan is officially defined as the aging society by the United Nations in 1993. The method of how to effectively manage the aging problem has become a national issue. In risk management, people have gradually paid their attention to both the mortality bonds and the longevity bonds which are purely linked to mortality rate. There are many ways to price mortality-linked instruments in literatures. In order to circumvent the model risk and the parameter risk which arise from the other methods, we attempts to use the canonical valuation approach with nonparametric method to forecast mortality rate for pricing longevity bonds. The results of this study will be also compared to the pricing of Wang transform, and we hope that this study may provide a better pricing method for longevity bonds.

    壹、緒論 1 貳、文獻回顧 3 一、死亡率連結債券商品簡介 3 二、死亡率連結債券模型簡介 6 參、死亡率預測模型與評價方法 9 一、Canonical Valuation of Mortality-Linked Securities 9 二、 Canonical Valuation基本概念 10 三、年齡和時間的數據相依性 11 四、拔靴數值方法 14 五、死亡率預估 15 六、存活率預估 18 七、求解Canonical Measure 19 肆、債券定價及數值結果 24 一、資料來源 24 二、長壽債券定價 24 三、求解Wang transform評價方法下的風險市場價格(λ_t) 28 伍、結論及建議 30 一、結論 30 二、研究限制及建議 31 陸、附錄 32

    1. Bauer, D., M. Boerger, and J. Russ, 2008, On the Pricing of Longevity-Linked Securities. World Wide Web: www.mortalityrisk.org.
    2. Black, F., and M. Scholes, 1973, The Pricing of Options and Corporate Liabilities,
    Journal of Political Economy, 81: 637-654
    3. Cairns, A. J. G., D. Blake, and K. Dowd, 2006, A Two-Factor Model for Stochastic
    Mortality With Parameter Uncertainty: Theory and Calibration, Journal of Risk and
    Insurance, 73: 687-718.
    4. Cairns, A. J. G., D. Blake, and K. Dowd, 2006, Living With Mortality: Longevity
    Bonds and Other Mortality-Linked Securities, Faculty of Actuaries.
    5. Carlstein, E., 1986, The Use of Subseries Methods for Estimating the Variance of a
    General Statistic From a Stationary Time Series, Annals of Statistics, 14: 1171-1179.
    6. Gray, P., and S. Newman, 2005, Canonical Valuation of Options in the Presence of
    Stochastic Volatility, Journal of Futures Markets, 25: 1-19.
    7. Kapur, K. N., 1989, Maximum-Entropy Models in Science and Engineering (New York: Wiley Eastern, Ltd.).
    8. Kullback, S., and R. A. Leibler, 1951, On Information and Sufficiency, Annals of Mathematical Statistics, 22: 79-86.
    9. Li, J. S. H., and A. C. Y. Ng, 2011, Canonical Valuation of Mortality-Linked Securities, The Journal of Risk and Insurance, 78: 853-884.
    10. Lin, Y., and S. H. Cox, 2008, Securitization of Catastrophe Mortality Risks,
    Insurance: Mathematics and Economics, 42(2): 628-637.
    11. Liu,Q., and S. Guo, 2011,Canonical Distribution, Implied Binomial Tree, and the
    Pricing of American Options, Journal of Futures Markets,00: 00,1-16.
    12. Milevsky, M. A., S. D. Promislow, and V. R. Young, 2005, Financial Valuation of
    Mortality Risk via the Instantaneous Sharpe Ratio: Applications to Pricing Pure
    Endowments. Working Paper, Department of Mathematics, University of Michigan.
    World Wide Web: http://arxiv.org/abs/0705.1302.
    13. Pelsser, A., 2008, On the Applicability of the Wang Transform for Pricing Financial Risks, ASTIN Bulletin, 38: 171-181.
    14. Ruhm, D., 2003, Distribution-Based Pricing Formulas Are Not Arbitrage-Free, Casualty Actuarial Society Proceedings, 90: 97-129.
    15. Stutzer, M., 1996, A Simple Nonparametric Approach to Derivative Security Valuation, Journal of Finance, 51: 1633-1652.
    16. Tsai, J. T., 2012, The Pricing of Mortality-linked Contingent Claims: an Equilibrium Approach.
    17. Wang, S., 1996, Premium Calculation by Transforming the Layer Premium Density, ASTIN Bulletin, 26(1): 71-92.
    18. Wang, S., 2000, A Class of Distortion Operations for Pricing Financial and Insurance Risks, Journal of Risk and Insurance, 67: 15-36.
    19. Wang, S., 2002, A Universal Framework For Pricing Financial and Insurance Risks, ASTIN Bulletin, 32: 213-234.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE