簡易檢索 / 詳目顯示

研究生: 季竑丞
CHI, Hung Cheng
論文名稱: 適用於WBAN之高能源效率及可調整之媒體存取控制通訊協定
An Energy-Efficient and Adjustable Communication MAC Protocol for Wireless Body Area Network Applications
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 吳仁銘
楊家驤
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 65
中文關鍵詞: 無線近身網路高能源效率多時分工存取遠端醫療照顧系統
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,穿戴式遠端醫療照顧越來越普及。在這種醫療專門的領域,無線感測網路發展出無線近身網路。無線近身網路是一個短距離通訊與低功率損耗的系統,很適合運用在遠端醫療照顧的系統。

    在遠端醫療照顧系統中,需要可以多個生理訊號同時傳到一個手持裝置而且可以在裝置上即時的觀測訊號,我們也需要使用很久的時間,這就代表需要很低的功率消耗。根據前面的需求,我們設計了一個低功率消耗,低時間延遲的媒體存取控制位址之協定,藉由這個媒體存取控制位址之協定來提升整體系統的效能。

    在此論文中,我們提出以多時分工存取為基礎而去改良整體系統,因為運用多時分工存取可以節省能量,但是還是存在著額外控制封包開支與閒置聆聽的問題,所以我們提出一個低功耗的wakeup radio 連接在感測器之前,加入這個wakeup radio後,它會讓感測器減少處在閒置的狀態然後增加睡眠狀態的時間,這樣可以減少額外控制封包開支與閒置聆聽的問題。使用wakeup radio不但可以減少整體的能量消耗,也可以延長網路的壽命。而在改良傳統多時分工存取中,我們提出一個方法是在當主控者想要接收資料時,才會傳送wakeup radio 給感測器, 當感測器收到wakeup radio才會醒來開始通訊,比起傳統的多時分工存取,我們提出的協定是彈性且可調的。

    此論文也會計算我們提出協定中,一個框架的時槽個數與系統的工作週期,接下來再計算我們提出協定的功率消耗與時間延遲,計算過後再與其他媒體存取控制位址之協定比較。在功率消耗的部分,當封包間隔時間為10秒時,系統的功率消耗是WiseMAC的三分之一,在時間延遲的部分,延遲時間為29.76毫秒,而我們提出的協定也不會因為時間延長而延遲越大,可以證明我們提出的協定可以達到低功率耗耗、少延遲與彈性調整,此外也大大的提升整個系統的效能。


    Nowadays, applications of wearable instruments for remote healthcare have become a highly-valued research and developed the wireless body area network (WBAN). In a remote healthcare system, multiple physiological signals are required to be transmitted simultaneously to a mobile device and be observed in real time. According to the above requirements, we propose a low-power and low time delay MAC protocol.

    In this thesis, we improve the time division multiple access (TDMA) system. TDMA is a helpful way to save power, but overhead and idle listening problems still exist. Thus, we propose a low cost wakeup radio to connect to the sensor. Wakeup radio makes sensor nodes to be in sleep state when there is no data to transmit or receive. If the system starts to operate, controller will send message to wakeup radio and then the sensors will start to communicate. Therefore, using wakeup radio can not only reduce the overall power consumption, but it can also prolong the lifetime of the network. In the improvement of traditional TDMA, we propose a method to wake up the sensors through wakeup radio, only when the controller wants them to receive data. After the sensor receives wakeup radio, it soon wakes up and starts to communicate. The proposed protocol is more adjustable than traditional TDMA.

    The number of slots at each frame in our proposed protocol is calculated, as well as the power consumption and time delay, which is compared to other MACs. The packet interval time is regarded as the unit of power consumption in the simulation. The comparison shows that the power consumption of the proposed protocol is nearly one third than that of WiseMAC when the packet inter-arrival time is 10 seconds. Besides, the time delay is 29.76 millisecond and does not vary when the operational time becomes longer. Therefore, it is proved that the proposed protocol achieves a low-power consumption, a low time delay and flexibility for utilization. The proposed protocol greatly enhances the overall system performance.

    Abstract i 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Healthcare Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Medical Application in Wireless Body Area Network (WBAN) . . . 2 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Overview of Wireless Body Area Network and Related Works 7 2.1 Wireless Body Area Network (WBAN) . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Comparison between WSN and WBAN . . . . . . . . . . . . . . . . 8 2.2 Wireless Multiple Access Protocol . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Wireless Multiple Access . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Time Division Multiple Access (TDMA) . . . . . . . . . . . . . . . 11 2.2.3 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) 12 2.2.4 Comparison between TDMA and CSMA/CA . . . . . . . . . . . . . 14 2.3 Source of Energy Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 Using TDMA Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 Using Scheduled Contention Protocol . . . . . . . . . . . . . . . . . 17 2.5 Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 MAC Protocol Design and Structure 21 3.1 Physiological Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Physiological Signals in WBAN . . . . . . . . . . . . . . . . . . . . 21 3.1.2 Physiological Signals Description . . . . . . . . . . . . . . . . . . . 22 3.1.3 Physiological Signals Specification . . . . . . . . . . . . . . . . . . 25 3.2 Battery Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Wakeup Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 WBAN System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.1 State Transition Diagram of BAN Devices . . . . . . . . . . . . . . . 29 3.4.2 Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.3 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 TDMA Frame Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5.1 Packet Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.2 Time Slot Assignment . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 MAC Protocol Analysis and Simulation 37 4.1 TDMA Frame Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Duty Cycle Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 Duty Cycle Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Power Consumption Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.1 Marinkovic Method MAC . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.2 B-MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.3 WiseMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.4 ZigBee MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3.5 Proposed Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Time Delay Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 Battery Capacity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.6.1 Power Consumption Analysis . . . . . . . . . . . . . . . . . . . . . 53 4.6.2 Time Dealy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5 Future Works and Conclusion 59 5.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    [1] C. C. Chan, W. C. Chou, C. W. Chen, Y. L. Ho, Y. H. Lin, and H. P. Ma, “Energy efficient diagnostic grade mobile ECG monitoring,” in IEEE International Conference on New Circuits and Systems Conference (NEWCAS), Montreal, Canada, Jun. 2012, pp. 153–156.
    [2] B. Heile. (2011, Jul.) The IEEE 802.15 Task Group 6 (BAN). [Online]. Available: http://www.ieee802.org/15/

    [3] I. Rhee, A. Warrier, M. Aia, J. Min, and M. Sichitiu, “Z-MAC: A hybrid MAC for wireless sensor networks,” IEEE Transactions on Networking (TON), vol. 16, no. 3, pp. 511–524, Jun. 2008.

    [4] H. Gong, M. Liu, L. Yu, and X. Wang, “An event driven TDMA protocol for wireless sensor networks,” in IEEE International Conference on Communications and Mobile Computing (IWCMC), Yunnan, China, Jan. 2009, pp. 132–136.

    [5] R. Lo Cigno, M. Nardelli, and M. Welzl, “Sesam: A semi-synchronous, energy savvy, application-aware MAC,” in IEEE International Conference on Wireless On-Demand Network Systems and Services (WONS), Snowbird, UT, USA, Feb. 2009, pp. 93–100.

    [6] R. Kannan, R. Kalidindi, S. S. Iyengar, and V. Kumar, “Energy and rate based MAC protocol for wireless sensor networks,” ACM Transactions on SIGMOD Record, vol. 32, no. 4, pp. 60–65, Dec. 2003.

    [7] B. Latr´e, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A survey on wireless body area networks,” ACM Transactions on Wireless Networks, vol. 17, no. 1, pp. 1–18, Jan. 2011.

    [8] S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S. Saleem, Z. Rahman, and K. S. Kwak, “A comprehensive survey of wireless body area networks,” Journal of Medical Systems, vol. 36, no. 3, pp. 1065–1094, Jun. 2012.

    [9] S. Marinkovic, E. Popovici, C. Spagnol, S. Faul, and W. Marnane, “Energy-efficient low duty cycle MAC protocol for wireless body area networks,” IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 6, pp. 915–925, Nov. 2009.

    [10] N. Timmons and W. Scanlon, “An adaptive energy efficient MAC protocol for the medical body area network,” in IEEE International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace Electronic Systems Technology (VITAE), Aalborg, Denmark, May 2009, pp. 587–593.
    [11] O. Omeni, A. C. W. Wong, A. Burdett, and C. Toumazou, “Energy efficient medium access protocol for wireless medical body area sensor networks,” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, no. 4, pp. 251–259, Dec. 2008.

    [12] A. El-Hoiydi and J.-D. Decotignie, “WiseMAC: an ultra low power MAC protocol for the downlink of infrastructure wireless sensor networks,” in IEEE International Conference on International Symposium on Computers and Communications (ISCC), Alexandria, Egypt, Jun. 2007, pp. 244–251.

    [13] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor networks,” in IEEE International Conference on Embedded networked sensor systems (SenSys), Baltimore, MD, USA, Nov. 2004, pp. 95–107.

    [14] B. Andersson, N. Pereira, and E. Tovar, “Analyzing TDMA with slot skipping,” IEEE Transactions on Industrial Informatics, vol. 4, no. 4, pp. 225–236, Nov. 2008.

    [15] S. Gopalan and J. T. Park, “Energy-efficient MAC protocols for wireless body area networks: Survey,” in IEEE International Conference on International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, Oct. 2010, pp. 739–744.
    [16] S. Ullah, P. Khan, N. Ullah, S. Saleem, H. Higgins, and K. S. Kwak, “A review of wireless body area networks for medical applications,” Journal of Network and System Sciences, vol. 2, no. 8, pp. 797–803, Aug. 2010.
    [17] R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach, 1st ed. Piscataway, NJ, USA: Wiley-IEEE Press, Dec. 2001.
    [18] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, 1st ed. Cambridge, MA, USA: MIT Press/Elsevier, Sep. 2005.
    [19] C. V. Mieghem, M. Sabbe, and D. Knockaert, “The clinical value of the ECG in noncardiac conditions,” journal of Chest, vol. 125, no. 4, pp. 1561–1576, Apr. 2004.
    [20] J. G. Webster, Medical Instrumentation Application and Design, 3rd ed. Piscataway, NJ, USA: John Wiley and Sons, Inc, Feb. 1999.
    [21] J. J. Carr and J. M. Brown, Introduction to Biomedical Equipment Technology, 3rd ed. Berea, OH, USA: Prentice Hall Career Technology, May 2000.
    [22] M. M. Khalid A. Al-Saud and A. Mohamed, “Wireless body area sensor networks signal processing and communication framework: Survey on sensing, communication technologies, delivery and feedback,” Journal of Computer Science, vol. 8, no. 1, pp. 121– 132, Jan. 2012.
    [23] S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S. Saleem, Z. Rahman, and K. S. Kwak, “A comprehensive survey of wireless body area networks,” Journal of Medical Systems, vol. 36, no. 3, pp. 1065–1094, Jun. 2012.
    [24] S. Ullah, P. Khan, N. Ullah, S. Saleem, H. Higgins, and K. S. Kwak, “A review of wireless body area networks for medical applications,” Journal of Network and System Sciences, vol. 2, no. 8, pp. 797–803, Jan. 2010.

    [25] T. Gibson and N. Kelly, “Solar photovoltaic charging of lithium-ion batteries,” in IEEE International Conference in Vehicle Power and Propulsion Conference (VPPC), Dearborn, MI, USA, Sep. 2009, pp. 310–316.
    [26] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: Survey and implications,” Journal of Communications Surveys Tutorials, vol. 13, no. 3, pp. 443–461, Jul. 2011.
    [27] S. B. Company. (2013, Feb.) Industrial rechargeable lithium ion batteries. [Online]. Available: http://www.smallbattery.company.org.uk/sbc industrial lithium rechargeable.htm#2

    [28] K. Maharatna, E. B. Mazomenos, J. Morgan, and S. Bonfiglio, “Towards the development of next-generation remote healthcare system: Some practical considerations,” in IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea, May 2012, pp. 1–4.
    [29] R. Falk and H. J. Hof, “Fighting insomnia: A secure wake-up scheme for wireless sensor networks,” in IEEE International Conference on Emerging Security Information Systems and Technologies (SECURWARE), Glyfada, Athens, Greece, Jun. 2009, pp. 191–196.
    [30] N. A. Somani and Y. Pate, “ZigBee: A low power wireless technology for industrial applications,” Journal of Control Theory and Computer Modelling (IJCTCM), vol. 2, no. 3, pp. 27–33, May. 2012.
    [31] D. Simunic, S. Tomac, and I. Vrdoljak, “Wireless ECG monitoring system,” in IEEE International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace Electronic Systems Technology (VITAE), Aalborg, Danmark, May 2009, pp. 73–76.
    [32] R. Fensli, E. Gunnarson, and O. K. Hejlesen, “A wireless ECG system for continuous event recording and communication to a clinical alarm station,” in IEEE International Conference on Engineering in Medicine and Biology Society (EMBS), San Francisco, California, USA, Sep. 2004, pp. 2208–2211.

    [33] J. Justesen and S. Madsen, “Wearable wireless ECG monitoring hardware prototype for use in patients own home,” in IEEE International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), London, Kingdom, Apr. 2009, pp. 1–3.

    [34] Y. Y. ChenWu, H. P. Ma, C. Biswas, and D. Markovic, “Universal architecture prototype for patient-centric medical environment,” in IEEE International Conference on VLSI Design, Automation, and Test (VLSI-DAT), Hsinchu, Taiwan, Apr. 2012, pp. 1–4.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE