研究生: |
許芳慈 Hsu, Fang-Tzu. |
---|---|
論文名稱: |
硼碳氮氧奈米粒子表面修飾葉酸作為硼中子捕獲治療主動靶向奈米藥物之研究 Development of Folic acid-Conjugated Boron carbon oxynitride (BCNO) Nanoparticles for Targeted Boron Neutron Capture Therapy |
指導教授: |
龔佩雲
Keng, Pei-Yuin |
口試委員: |
劉俊彥
Liu, Chun-Yen 陳芳馨 Chen, Fang-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | 表面功能化 、主動靶向 、含硼奈米藥物 、藥物投遞 、硼中子捕獲治療 |
外文關鍵詞: | Surface functionalization, active targeting, boron nanodrug, drug delivery, boron neutron capture therapy |
相關次數: | 點閱:61 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硼中子捕獲治療(BNCT)是具有潛力的癌症治療法。與傳統放射治療不同,BNCT有高線性能量(LET),可以在短距離內(< 10微米)釋放所有能量。高 LET 粒子能夠精確殺死腫瘤細胞,同時不會損害鄰近的正常細胞。硼藥物輸送的主要困難在於藥物的腫瘤選擇性能力。有效的 BNCT 治療需要對腫瘤細胞有高選擇性並含有足夠濃度的硼-10(約 20-50 微克 10B/g 腫瘤)。此外,硼藥物必須在腫瘤細胞中維持足夠的時間,且在腫瘤組織和正常組織之間的分佈存在顯著差異(T/N,T/B比值 > 3)。近年來,第三代硼藥物被開發出來以克服小分子藥物的限制。在這些第三代硼藥物中,硼基底奈米粒子藥物因其每個奈米粒子具有高硼含量而引起關注。然而,目前的硼基底奈米粒子藥物面臨一些挑戰,包括需要增加在生理環境中的穩定性、提高藥物的細胞通透性、降低毒性以確保長期的血液循環。為了克服這些挑戰,此碩士論文透過非共價或共價鍵結將硼碳氮氧化物 (BCNO) 奈米粒子與聚乙二醇 (PEG) 和聚丙烯酸 (PAA) 進行表面功能化,並分析這些奈米顆粒的高分子含量、尺寸、表面電荷、形態和穩定性。根據熱重分析儀(TGA)、動態光散射(DLS)和穿透式電子顯微鏡(TEM)的結果,最佳的表面功能化方式為非共價鍵結PEG於BCNO奈米粒子,具有高達40%的功能化效率、球形形貌及適當的尺寸範圍(直徑為50至200奈米)。因此,我們選擇了非共價功能化方法進行主動靶向功能化。
主動靶向方法在提升腫瘤細胞中的藥物濃度和增強腫瘤選擇性方面顯示出潛力。由於葉酸能選擇性地結合過度表現於乳腺癌細胞上的葉酸受體,葉酸作為癌症治療中的活性靶向劑備受關注。透過將葉酸與抗癌藥物、奈米顆粒或其他藥物結合,可以增強遞送效果並減少對正常細胞的毒性。在本篇研究中,我們合成了含有葉酸配體的PEG功能化BCNO奈米粒子(BCNO@PEG-FA)作為主動靶向硼奈米藥物。使用雷射掃描共軛焦顯微鏡 (LSCM) 和感應耦合電漿質譜 (ICP-MS) 分析了 BCNO@PEG-FA 的體外細胞攝取,結果顯示硼的細胞攝取量增加了近兩倍。此外,與BCNO@PEG相比,BCNO@PEG-FA在體外 BNCT 治療後顯示腫瘤細胞存活率降低了10%。這些結果證明了主動靶向藥物傳輸和 BNCT 治療相結合用於癌症治療的潛力。
Boron neutron capture therapy (BNCT) holds great potential in cancer treatment. Unlike traditional radiation therapy, BNCT has high linear energy transfer (LET), which deposit a large amount of energy over a short distance (< 10 μm). The high LET radiation can cause significant damage to cell death in the targeted tumor cells while sparing the normal tissues. The main difficulty in boron drug delivery is the selectively ability of boron delivery agents. An effective BNCT treatment requires high tumor cell targeting and sufficient concentration of boron atoms delivered to tumor cells (~ 20-50 µg 10B/g of tumor). Furthermore, boron agents must persist in the tumor cells for a sufficient time, with greatly different distribution of boron between tumor tissue and normal tissue (T/N, T/B ratio > 3). The third generation of boron agents is currently being developed to overcome the limitations of small molecule drugs. Among the third generation of boron agents, boron-based nanoparticle drugs have shown promise due to their high boron composition per nanoparticle. However, current boron-based nanoparticle drugs face several challenges, including the need to increase stability in the physiological environment, improve cell permeability, and reduce toxicity to ensure long-term blood circulation. To address these challenges, this master's thesis demonstrates the functionalization of boron carbon oxynitride (BCNO) nanoparticles with polyethylene glycol (PEG) and polyacrylic acid (PAA) via non-covalent or covalent conjugation. The polymer content, size, surface charge, morphology, and stability of these nanoparticles were investigated. According to the results from thermogravimetric analysis (TGA), dynamic light scattering (DLS) and transmission electron microscopy (TEM), the BCNO nanoparticles functionalized PEG via non-covalent coupling demonstrated optimal functionalization, with a high 40% functionalization efficiency, spherical morphology, and a suitable size range of 50 to 200 nm in diameter. Consequently, we selected the non-covalent functionalization approach for forward active targeting functionalization.
An active targeting approach has shown promise in increasing drug concentration in tumor cells and enhancing tumor selectivity. Folic acid has gained attention as an active targeting agent in cancer therapy due to its ability to selectively bind to the overexpression of folate receptors on breast cancer cells. By conjugating folic acid to anticancer drugs, nanoparticles, or other drug agents, it is possible to enhance delivery efficacy and reduce toxicity to normal cells. In this work, we have synthesized a PEG-functionalized boron carbon oxynitride (BCNO) nanoparticles with folic acid ligand (BCNO@PEG-FA) as an active targeting boron nanodrug. The in vitro cellular uptake of the BCNO@PEG-FA was analyzed using laser scanning confocal microscope (LSCM) and inductively coupled plasma mass spectrometry (ICP-MS), revealing nearly 2-fold higher boron cellular uptake. Moreover, the BCNO@PEG-FA showed a 10% reduction in tumor cell viability after in vitro BNCT treatment compared to BCNO@PEG. These results demonstrated the potential of combining active targeting drug delivery and BNCT treatment for enhance therapeutic outcomes for cancer treatment.
[1] Jin, W. H., Seldon, C., Butkus, M., Sauerwein, W., & Giap, H. B. (2022). A Review of Boron Neutron Capture Therapy: Its History and Current Challenges. Int J Part Ther, 9(1), 71-82. doi:10.14338/IJPT-22-00002.1
[2] Zhou, Y.-T., Cheng, K., Liu, B., Cao, Y.-C., Fan, J.-X., Liu, Z.-G., & Zhao, Y.-D. (2024). Recent progress of nano-drugs in neutron capture therapy. Theranostics, 14(8), 3193-3212.doi:10.7150/thno.95034
[3] Sanita, G., Carrese, B., & Lamberti, A. (2020). Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci, 7, 587012.doi:10.3389/fmolb.2020.587012
[4] Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev, 99(Pt A), 28-51. doi:10.1016/j.addr.2015.09.012
[5] Chien, L. C., Chiang, C. W., Lao, C. C., Lin, Y. I., Lin, H. W., & Keng, P. Y. (2021). Boron Carbon Oxynitride as a Novel Metal-Free Photocatalyst. Nanoscale Res Lett, 16(1), 176. doi:10.1186/s11671-021-03629-5
[6] Das, M., Mohanty, C., & Sahoo, S. K. (2009). Ligand-based targeted therapy for cancer tissue. Expert opinion on drug delivery, 6(3), 285-304. doi:10.1517/17425240902780166
[7] Thapa, R. K., Choi, J. Y., Gupta, B., Ramasamy, T., Poudel, B. K., Ku, S. K., Youn, Y. S., Choi, H. G., Yong, C. S., & Kim, J. O. (2016). Liquid crystalline nanoparticles encapsulating cisplatin and docetaxel combination for targeted therapy of breast cancer. Biomater Sci, 4(9), 1340-1350. doi:10.1039/c6bm00376a
[8] Tavare, A. N., Perry, N. J., Benzonana, L. L., Takata, M., & Ma, D. (2012). Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer, 130(6), 1237-1250. doi:10.1002/ijc.26448
[9] Perez-Herrero, E., & Fernandez-Medarde, A. (2015). Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm, 93, 52-79. doi:10.1016/j.ejpb.2015.03.018
[10] Alam, A. (2018). Chemotherapy Treatment and Strategy Schemes: A Review. Open Access Journal of Toxicology, 2(5). doi:10.19080/oajt.2018.02.555600
[11] Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: current advances and future directions. Int J Med Sci, 9(3), 193-199. doi:10.7150/ijms.3635
[12] Mohan, G., T P, A. H., A J, J., K M, S. D., Narayanasamy, A., & Vellingiri, B. (2019). Recent advances in radiotherapy and its associated side effects in cancer—a review. The Journal of Basic and Applied Zoology, 80(1). doi:10.1186/s41936-019-0083-5
[13] Barazzuol, L., Coppes, R. P., & van Luijk, P. (2020). Prevention and treatment of radiotherapy-induced side effects. Mol Oncol, 14(7), 1538-1554. doi:10.1002/1878- 0261.12750
[14] Dymova, M. A., Taskaev, S. Y., Richter, V. A., & Kuligina, E. V. (2020). Boron neutron capture therapy: Current status and future perspectives. Cancer Commun (Lond), 40(9), 406-421. doi:10.1002/cac2.12089
[15] Suzuki, M. (2020). Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int J Clin Oncol, 25(1), 43-50. doi:10.1007/s10147-019-01480-4
[16] Wang, S., Zhang, Z., Miao, L., & Li, Y. (2022). Boron Neutron Capture Therapy: Current Status and Challenges. Front Oncol, 12, 788770. doi:10.3389/fonc.2022.788770
[17] Hu, K., Yang, Z., Zhang, L., Xie, L., Wang, L., Xu, H., Josephson, L., Liang, S. H., & Zhang, M.-R. (2020). Boron agents for neutron capture therapy. Coordination Chemistry Reviews, 405. doi:10.1016/j.ccr.2019.213139
[18] Nikitaki, Z., Velalopoulou, A., Zanni, V., Tremi, I., Havaki, S., Kokkoris, M., Gorgoulis, V. G., Koumenis, C., & Georgakilas, A. G. (2022). Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Rev Mol Med, 24, e15. doi:10.1017/erm.2022.6
[19] Mechetin, G. V., & Zharkov, D. O. (2023). DNA Damage Response and Repair in Boron Neutron Capture Therapy. Genes (Basel), 14(1).
doi:10.3390/genes14010127
[20] Maier, P., Hartmann, L., Wenz, F., & Herskind, C. (2016). Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. Int J Mol Sci, 17(1). doi:10.3390/ijms17010102
[21] Kawabata, S., Suzuki, M., Hirose, K., Tanaka, H., Kato, T., Goto, H., Narita, Y., & Miyatake, S. I. (2021). Accelerator-based BNCT for patients with recurrent glioblastoma: a multicenter phase II study. Neurooncol Adv, 3(1), vdab067. doi:10.1093/noajnl/vdab067
[22] Kageji, T., Mizobuchi, Y., Nagahiro, S., Nakagawa, Y., & Kumada, H. (2011). Clinical results of boron neutron capture therapy (BNCT) for glioblastoma. Appl Radiat Isot, 69(12), 1823-1825. doi:10.1016/j.apradiso.2011.05.029
[23] LE, F. (1954). Neutron capture therapy with boron in the treatment of glioblastoma multiforme. Am J Roentgenol Radium Ther Nucl Med, 71, 279-293.
[24] Suzuki, M., Kato, I., Aihara, T., Hiratsuka, J., Yoshimura, K., Niimi, M., Kimura, Y., Ariyoshi, Y., Haginomori, S., Sakurai, Y., Kinashi, Y., Masunaga, S., Fukushima, M., Ono, K., & Maruhashi, A. (2014). Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer. J Radiat Res, 55(1), 146-153. doi:10.1093/jrr/rrt098
[25] Kato, I., Ono, K., Sakurai, Y., Ohmae, M., Maruhashi, A., Imahori, Y., Kirihata, M., Nakazawa, M., & Yura, Y. (2004). Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot, 61(5), 1069-1073. doi:10.1016/j.apradiso.2004.05.059
[26] Hiratsuka, J., Kamitani, N., Tanaka, R., Tokiya, R., Yoden, E., Sakurai, Y., & Suzuki, M. (2020). Long-term outcome of cutaneous melanoma patients treated with boron neutron capture therapy (BNCT). J Radiat Res, 61(6), 945-951. doi:10.1093/jrr/rraa068
[27] Gonzalez, S. J., Bonomi, M. R., Santa Cruz, G. A., Blaumann, H. R., Calzetta Larrieu, O. A., Menendez, P., Jimenez Rebagliati, R., Longhino, J., Feld, D. B., Dagrosa, M. A., Argerich, C., Castiglia, S. G., Batistoni, D. A., Liberman, S. J., & Roth, B. M. (2004). First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome. Appl Radiat Isot, 61(5), 1101-1105.
doi:10.1016/j.apradiso.2004.05.060
[28] He, H., Li, J., Jiang, P., Tian, S., Wang, H., Fan, R., Liu, J., Yang, Y., Liu, Z., & Wang, J. (2021). The basis and advances in clinical application of boron neutron capture therapy. Radiat Oncol, 16(1), 216. doi:10.1186/s13014-021-01939-7
[29] Jiang, S. H., Hsueh Liu, Y. W., Chou, F. I., Liu, H. M., Peir, J. J., Liu, Y. H., Huang, Y. S., Wang, L. W., Chen, Y. W., Yen, S. H., Wu, Y. H., Liu, C. S., Lee, J. C., Chang, C. W., Wang, S. J., Huang, W. S., & Kai, J. J. (2020). The overview and prospects of BNCT facility at Tsing Hua Open-pool reactor. Appl Radiat Isot, 161,
109143. doi:10.1016/j.apradiso.2020.109143
[30] Nedunchezhian, K., Aswath, N., Thiruppathy, M., & Thirugnanamurthy, S. (2016). Boron Neutron Capture Therapy - A Literature Review. J Clin Diagn Res, 10(12), ZE01-ZE04. doi:10.7860/JCDR/2016/19890.9024
[31] Kiyanagi, Y., Sakurai, Y., Kumada, H., & Tanaka, H. (2019). Status of acceleratorbased BNCT projects worldwide. Paper presented at the 25th International Conference on the Application of Accelerators in Research and Industry.
[32] Komori, S., Hirose, K., Takeuchi, A., Kato, R., Motoyanagi, T., Yamazaki, Y., Sato, M., Kato, T., & Takai, Y. (2023). Characterization and clinical utility of different collimator shapes in accelerator-based BNCT systems for head and neck cancer. Phys Med, 112, 102625. doi:10.1016/j.ejmp.2023.102625
[33] Kumada, H., Sakae, T., & Sakurai, H. (2023). Current development status of accelerator-based neutron source for boron neutron capture therapy. EPJ Techniques and Instrumentation, 10(1). doi:10.1140/epjti/s40485-023-00105-5
[34] Coghi, P., Li, J., Hosmane, N. S., & Zhu, Y. (2023). Next generation of boron neutron capture therapy (BNCT) agents for cancer treatment. Med Res Rev, 43(5), 1809- 1830. doi:10.1002/med.21964
[35] Barth, R. F., Mi, P., & Yang, W. (2018). Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond), 38(1), 35. doi:10.1186/s40880-018- 0299-7
[36] Pitto-Barry, A. (2021). Polymers and boron neutron capture therapy (BNCT): a potent combination. Polymer Chemistry, 12(14), 2035-2044. doi:10.1039/d0py01392g
[37] Slatkin, D. N. (1991). A HISTORY OF BORON NEUTRON CAPTURE THERAPY
OF BRAIN TUMOURS. Brain, 144(4), 1609-1629. doi:10.1093/brain/114.4.1609
[38] Snyder, H. R., Reedy, A. J., & Lennarz, W. J. (1958). Synthesis of aromatic boronic acids. aldehydo boronic acids and a boronic acid analog of tyrosine1. Journal of the American Chemical Society, 80(4), 835-838.
[39] Soloway, A. H., Hatanaka, H., & Davis, M. A. (1967). Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. Journal of medicinal chemistry, 10(4), 714-717. doi:10.1021/jm00316a042.
[40] Fukuda, H. (2021). Boron Neutron Capture Therapy (BNCT) for Cutaneous Malignant Melanoma Using (10)B-p-Boronophenylalanine (BPA) with Special Reference to the Radiobiological Basis and Clinical Results. Cells, 10(11). doi:10.3390/cells10112881
[41] Wittig, A., Sauerwein, W. A., Coderre, J. A., & Coderre, J. A. (2000). Mechanisms of Transport ofp-Borono-Phenylalanine through the Cell MembraneIn Vitro. Radiation Research, 153(2), 173-180. doi:10.1667/0033- 7587(2000)153[0173:Motopb]2.0.Co;2
[42] Wongthai, P., Hagiwara, K., Miyoshi, Y., Wiriyasermkul, P., Wei, L., Ohgaki, R.,Kato, I., Hamase, K., Nagamori, S., & Kanai, Y. (2015). Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+,LAT1 and LAT2. Cancer Sci, 106(3), 279-286. doi:10.1111/cas.12602
[43] Nomoto, T., Inoue, Y., Yao, Y., Suzuki, M., Kanamori, K., Takemoto, H., Matsui, M.,Tomoda, K., & Nishiyama, N. (2020). Poly(vinyl alcohol) boosting therapeutic
potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. Science Advances, 6(4), eaaz1722. doi:10.1126/sciadv.aaz1722
[44] MORI, Y., SUZUKI, A., YOSHINO, K., & KAKIHANA, H. (1989). Complex
formation of p‐boronophenylalanine with some monosaccharides. Pigment Cell Research, 2(4), 273-277. doi:10.1111/j.1600-0749.1989.tb00203.x
[45] Kageji, T., Nagahiro, S., Otersen, B., Gabel, D., Nakaichi, M., & Nakagawa, Y. (2002). Subcellular biodistribution of sodium borocaptate (BSH: Na 2 B 12 H 11 SH) in a rat glioma model in boron neutron capture therapy. Journal of neuro-oncology, 59,
135-142. doi:10.1023/A:1019688515204
[46] Porcari, P., Capuani, S., & Saverio, F. (2011). Novel Pharmacological and Magnetic Resonance Strategies to Enhance Boron Neutron Capture Therapy (BNCT) Efficacy in the Clinical Treatment of Malignant Glioma. In Management of CNS Tumors.
[47] Zhang, X., Lin, Y., Hosmane, N. S., & Zhu, Y. (2023). Nanostructured boron agents for boron neutron capture therapy: a review of recent patents. Med Rev (2021), 3(5), 425-443. doi:10.1515/mr-2023-0013
[48] Nakamura, H. (2013). Boron lipid-based liposomal boron delivery system for neutron capture therapy: recent development and future perspective. Future Medicinal Chemistry, 5(6), 715-730. doi:10.4155/fmc.13.48
[49] Koganei, H., Ueno, M., Tachikawa, S., Tasaki, L., Ban, H. S., Suzuki, M., Shiraishi, K., Kawano, K., Yokoyama, M., Maitani, Y., Ono, K., & Nakamura, H. (2013). Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers. Bioconjug Chem, 24(1), 124-132. doi:10.1021/bc300527n
[50] Li, J., Sun, Q., Lu, C., Xiao, H., Guo, Z., Duan, D., Zhang, Z., Liu, T., & Liu, Z. (2022). Boron encapsulated in a liposome can be used for combinational neutron capture therapy. Nat Commun, 13(1), 2143. doi:10.1038/s41467-022-29780-w
[51] Lee, W., Sarkar, S., Ahn, H., Kim, J. Y., Lee, Y. J., Chang, Y., & Yoo, J. (2020). PEGylated liposome encapsulating nido-carborane showed significant tumor suppression in boron neutron capture therapy (BNCT). Biochem Biophys Res Commun, 522(3), 669-675. doi:10.1016/j.bbrc.2019.11.144
[52] Wu, G., Barth, R. F., Yang, W., Chatterjee, M., Tjarks, W., Ciesielski, M. J., & Fenstermaker, R. A. (2004). Site-Specific Conjugation of Boron-Containing Dendrimers to Anti-EGF Receptor Monoclonal Antibody Cetuximab (IMC-C225) and Its Evaluation as a Potential Delivery Agent for Neutron Capture Therapy. Bioconjugate chemistry, 15(1), 185-194. doi:10.1021/bc0341674
[53] Xiang, J., Ma, L., Tong, J., Zuo, N., Hu, W., Luo, Y., Liu, J., Liang, T., Ren, Q., & Liu, Q. (2023). Boron-peptide conjugates with angiopep-2 for boron neutron capture therapy. Front Med (Lausanne), 10, 1199881. doi:10.3389/fmed.2023.1199881
[54] Fujimoto, T., Teraishi, F., Kanehira, N., Tajima, T., Sakurai, Y., Kondo, N., Yamagami, M., Kuwada, A., Morihara, A., Kitamatsu, M., Fujimura, A., Suzuki, M., Takaguchi, Y., Shigeyasu, K., Fujiwara, T., & Michiue, H. (2024). BNCT pancreatic cancer treatment strategy with glucose-conjugated boron drug. Biomaterials, 309, 122605. doi:10.1016/j.biomaterials.2024.122605
[55] Zhang, L., Lin, Y., Wang, J., Yao, W., Wu, W., & Jiang, X. (2011). A facile strategy for constructing boron-rich polymer nanoparticles via a boronic acid-related reaction. Macromol Rapid Commun, 32(6), 534-539. doi:10.1002/marc.201000757
[56] Chiu, Y. L., Fu, W. Y., Huang, W. Y., Hsu, F. T., Chen, H. W., Wang, T. W., & Keng, P. Y. (2024). Enhancing Cancer Therapy: Boron-Rich Polyboronate Ester Micelles for Synergistic BNCT and PD-1/PD-L1 Checkpoint Blockade. Biomaterials Research. doi:10.34133/bmr.0040
[57] Shi, Y., Fu, Q., Li, J., Liu, H., Zhang, Z., Liu, T., & Liu, Z. (2020). Covalent Organic Polymer as a Carborane Carrier for Imaging-Facilitated Boron Neutron Capture Therapy. ACS Appl Mater Interfaces, 12(50), 55564-55573. doi:10.1021/acsami.0c15251
[58] Heber, E. M., Hawthorne, M. F., Kueffer, P. J., Garabalino, M. A., Thorp, S. I., Pozzi, E. C., Monti Hughes, A., Maitz, C. A., Jalisatgi, S. S., Nigg, D. W., Curotto, P., Trivillin, V. A., & Schwint, A. E. (2014). Therapeutic efficacy of boron neutron
capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model. Proc Natl Acad Sci U S A, 111(45), 16077-16081. doi:10.1073/pnas.1410865111
[59] Zhu, Y., & Hosmane, N. S. (2018). Nanostructured boron compounds for cancer therapy. Pure and Applied Chemistry, 90(4), 653-663. doi:10.1515/pac-2017-0903
[60] Zhu, Y., Prommana, P., Hosmane, N. S., Coghi, P., Uthaipibull, C., & Zhang, Y. (2022). Functionalized Boron Nanoparticles as Potential Promising Antimalarial Agents. ACS Omega, 7(7), 5864-5869. doi:10.1021/acsomega.1c05888
[61] Li, L., Li, J., Shi, Y., Du, P., Zhang, Z., Liu, T., Zhang, R., & Liu, Z. (2019). OnDemand Biodegradable Boron Nitride Nanoparticles for Treating Triple Negative Breast Cancer with Boron Neutron Capture Therapy. ACS Nano, 13(12), 13843- 13852. doi:10.1021/acsnano.9b04303
[62] Kuthala, N., Shanmugam, M., Yao, C. L., Chiang, C. S., & Hwang, K. C. (2022). One step synthesis of (10)B-enriched (10)BPO(4) nanoparticles for effective boron neutron capture therapeutic treatment of recurrent head-and-neck tumor. Biomaterials, 290, 121861. doi:10.1016/j.biomaterials.2022.121861
[63] Petersen, M. S., Petersen, C. C., Agger, R., Sutmuller, M., Jensen, M. R., Sørensen, P. G., Mortenen, M. W., Hanssen, T., Bjørnholm, T., Gundersen, H. J., Huiskamo, R., & Hokland, M. (2008). Boron nanoparticles inhibit tumour growth by boron neutron capture therapy in the murine B16-OVA model. Anticancer research, 28(2A), 571-576.
[64] Mortensen, M. W., Björkdahl, O., Sørensen, P. G., Hansen, T., Jensen, M. R., Gundersen, H. J. G., & Bjørnholm, T. (2006). Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy. Bioconjugate chemistry, 17(2), 284-290.
[65] Singh, P., Kaur, M., Singh, K., Meena, R., Kumar, M., Yun, J.-H., Thakur, A., Nakagawa, F., Suzuki, M., Nakamura, H., & Kumar, A. (2021). Fluorescent boron carbide quantum dots synthesized with a low-temperature solvothermal approach for boron neutron capture therapy. Physica E: Low-dimensional Systems and Nanostructures, 132. doi:10.1016/j.physe.2021.114766
[66] Kozien, D., Szermer-Olearnik, B., Rapak, A., Szczygiel, A., Anger-Gora, N., Boratynski, J., Pajtasz-Piasecka, E., Bucko, M. M., & Pedzich, Z. (2021). BoronRich Boron Carbide Nanoparticles as a Carrier in Boron Neutron Capture Therapy: Their Influence on Tumor and Immune Phagocytic Cells. Materials (Basel), 14(11). doi:10.3390/ma14113010
[67] Singh, B., Kaur, G., Singh, P., Singh, K., Kumar, B., Vij, A., Kumar, M., Bala, R., Meena, R., Singh, A., Thakur, A., & Kumar, A. (2016). Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy. Sci Rep, 6, 35535. doi:10.1038/srep35535
[68] Nakamura, H., Koganei, H., Miyoshi, T., Sakurai, Y., Ono, K., & Suzuki, M. (2015). Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT. Bioorg Med Chem Lett, 25(2), 172-174.doi:10.1016/j.bmcl.2014.12.005
[69] Zhang, Y., Kang, H. G., Xu, H. Z., Luo, H., Suzuki, M., Lan, Q., Chen, X., Komatsu, N., & Zhao, L. (2023). Tumor Eradication by Boron Neutron Capture Therapy with (10) B-enriched Hexagonal Boron Nitride Nanoparticles Grafted with Poly(Glycerol). Adv Mater, 35(35), e2301479. doi:10.1002/adma.202301479
[70] Alberti, D., Protti, N., Franck, M., Stefania, R., Bortolussi, S., Altieri, S., Deagostino, A., Aime, S., & Geninatti Crich, S. (2017). Theranostic Nanoparticles Loaded with Imaging Probes and Rubrocurcumin for Combined Cancer Therapy by Folate Receptor Targeting. ChemMedChem, 12(7), 502-509. doi:10.1002/cmdc.201700039
[71] Shi, Y., Li, J., Zhang, Z., Duan, D., Zhang, Z., Liu, H., Liu, T., & Liu, Z. (2018). Tracing Boron with Fluorescence and Positron Emission Tomography Imaging of Boronated Porphyrin Nanocomplex for Imaging-Guided Boron Neutron Capture Therapy. ACS Appl Mater Interfaces, 10(50), 43387-43395. doi:10.1021/acsami.8b14682
[72] Shanmugam, M., Kuthala, N., Kong, X., Chiang, C. S., & Hwang, K. C. (2023). Combined Gadolinium and Boron Neutron Capture Therapies for Eradication of Head-and-Neck Tumor Using Gd(10)B(6) Nanoparticles under MRI/CT Image Guidance. JACS Au, 3(8), 2192-2205. doi:10.1021/jacsau.3c00250
[73] Ogi, T., Kaihatsu, Y., Iskandar, F., Wang, W. N., & Okuyama, K. (2008). Facile Synthesis of New Full‐Color‐Emitting BCNO Phosphors with High Quantum Efficiency. Advanced Materials, 20(17), 3235-3238. doi:10.1002/adma.200702551
[74] Wang, W.-N., Ogi, T., Kaihatsu, Y., Iskandar, F., & Okuyama, K. (2011). Novel rareearth-free tunable-color-emitting BCNO phosphors. Journal of Materials
Chemistry, 21(14). doi:10.1039/c0jm02215b
[75] Gupta, B. K., Kumar, P., Kedawat, G., Kanika, K., Vithayathil, S. A., Gangwar, A. K., Singh, S., Kashyap, P. K., Lahon, R., Singh, V. N., Deshmukh, A. D., Narayanan, T. N., Singh, N., Gupta, S., & Kaipparettu, B. A. (2017). Tunable luminescence from two dimensional BCNO nanophosphor for high-contrast cellular imaging. RSC Advances, 7(66), 41486-41494. doi:10.1039/c7ra08306h
[76] von Moos, N., & Slaveykova, V. I. (2014). Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae--state of the art and knowledge gaps. Nanotoxicology, 8(6), 605-630. doi:10.3109/17435390.2013.809810
[77] Meng, H., Xia, T., George, S., & Nel, A. E. (2009). A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano, 3(7), 1620-1627.
[78] Shi, L., Zhang, J., Zhao, M., Tang, S., Cheng, X., Zhang, W., Li, W., Liu, X., Peng, H., & Wang, Q. (2021). Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale, 13(24), 10748-10764. doi:10.1039/d1nr02065j
[79] Kaymaz, S. V., Nobar, H. M., Sarigul, H., Soylukan, C., Akyuz, L., & Yuce, M. (2023). Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci, 322, 103035. doi:10.1016/j.cis.2023.103035
[80] Gessner, I. (2021). Optimizing nanoparticle design and surface modification toward clinical translation. MRS Bull, 46(7), 643-649. doi:10.1557/s43577-021-00132-1
[81] Xiao, X.-F., Jiang, X.-Q., & Zhou, L.-J. (2013). Surface Modification of Poly Ethylene Glycol to Resist Nonspecific Adsorption of Proteins. Chinese Journal of Analytical Chemistry, 41(3), 445-453. doi:10.1016/s1872-2040(13)60638-6
[82] Díez-Pascual, A. M., & Díez-Vicente, A. L. (2016). PEGylated boron nitride nanotube-reinforced poly(propylene fumarate) nanocomposite biomaterials. RSC Advances, 6(83), 79507-79519. doi:10.1039/c6ra09884c
[83] Chiang, C. W., Chien, Y. C., Yu, W. J., Ho, C. Y., Wang, C. Y., Wang, T. W., Chiang, C. S., & Keng, P. Y. (2021). Polymer-Coated Nanoparticles for Therapeutic and Diagnostic Non-(10)B Enriched Polymer-Coated Boron Carbon Oxynitride (BCNO) Nanoparticles as Potent BNCT Drug. Nanomaterials (Basel), 11(11). doi:10.3390/nano11112936
[84] Perry, J. L., Reuter, K. G., Kai, M. P., Herlihy, K. P., Jones, S. W., Luft, J. C., Napier, M., Bear, J. E., & DeSimone, J. M. (2012). PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett, 12(10), 5304-5310. doi:10.1021/nl302638g
[85] Pastukhov, A. I., Belyaev, I. B., Bulmahn, J. C., Zelepukin, I. V., Popov, A. A., Zavestovskaya, I. N., Klimentov, S. M., Deyev, S. M., Prasad, P. N., & Kabashin, A. V. (2022). Laser-ablative aqueous synthesis and characterization of elemental boron nanoparticles for biomedical applications. Sci Rep, 12(1), 9129. doi:10.1038/s41598-022-13066-8
[86] Stumm, W., Kummert, R., & Sigg, L. (1980). A ligand exchange model for the adsorption of inorganic and organic ligands at hydrous oxide interfaces. Croatica chemica acta, 53(2), 291-312.
[87] Liufu, S., Xiao, H., & Li, Y. (2004). Investigation of PEG adsorption on the surface of zinc oxide nanoparticles. Powder Technology, 145(1), 20-24. doi:10.1016/j.powtec.2004.05.007
[88] Jia, Q., Zeng, J., Qiao, R., Jing, L., Peng, L., Gu, F., & Gao, M. (2011). Gelification: an effective measure for achieving differently sized biocompatible Fe3O4 nanocrystals through a single preparation recipe. J Am Chem Soc, 133(48), 19512- 19523. doi:10.1021/ja2081263
[89] Bian, Y., Song, D., Fu, Z., Jiang, C., Xu, C., Zhang, L., Wang, K., Wang, S., & Sun, D. (2023). Carboxyl PEGylation of magnetic nanoparticles as antithrombotic and thrombolytic agents by calcium binding. J Colloid Interface Sci, 638, 672-685. doi:10.1016/j.jcis.2023.01.129
[90] Singh, M., Sviridenkova, N., Timur, N., Savchenko, A., Shetinin, I., & Majouga, A. (2016). Synthesis and Characterization of Stable Iron Oxide Nanoparticle with Amino Covalent Binding on the Surface for Biomedical Application. Journal of Cluster Science, 27(4), 1383-1393. doi:10.1007/s10876-016-1007-x
[91] Qian, W., Murakami, M., Ichikawa, Y., & Che, Y. (2011). Highly Efficient and Controllable PEGylation of Gold Nanoparticles Prepared by Femtosecond Laser Ablation in Water. The Journal of Physical Chemistry C, 115(47), 23293-23298.doi:10.1021/jp2079567
[92] Reznickova, A., Slepicka, P., Slavikova, N., Staszek, M., & Svorcik, V. (2017). Preparation, aging and temperature stability of PEGylated gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 523, 91-97. doi:10.1016/j.colsurfa.2017.04.005
[93] Di Felice, R., & Selloni, A. (2004). Adsorption modes of cysteine on Au(111): thiolate, amino-thiolate, disulfide. J Chem Phys, 120(10), 4906-4914. doi:10.1063/1.1645789
[94] Sreeprasad, T. S., & Berry, V. (2013). How do the electrical properties of graphene change with its functionalization? Small, 9(3), 341-350.doi:10.1002/smll.201202196
[95] Laguecir, A., Ulrich, S., Labille, J., Fatin-Rouge, N., Stoll, S., & Buffle, J. (2006). Size and pH effect on electrical and conformational behavior of poly(acrylic acid): Simulation and experiment. European Polymer Journal, 42(5), 1135-1144. doi:10.1016/j.eurpolymj.2005.11.023
[96] Biggs, S., & Healy, T. W. (1994). Electrosteric stabilisation of colloidal zirconia with low-molecular-weight polyacrylic acid. An atomic force microscopy study. Journal of the Chemical Society, Faraday Transactions, 90(22), 3415-3421. doi:10.1039/FT9949003415
[97] Hajdu, A., Szekeres, M., Toth, I. Y., Bauer, R. A., Mihaly, J., Zupko, I., & Tombacz, E. (2012). Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media. Colloids Surf B Biointerfaces, 94, 242-249. doi:10.1016/j.colsurfb.2012.01.042
[98] Sehgal, A., Lalatonne, Y., Berret, J. F., & Morvan, M. (2005). Precipitation− redispersion of cerium oxide nanoparticles with poly (acrylic acid): Toward stable dispersions. Langmuir, 21(20), 9359-9364. doi:10.1021/la0513757
[99] Arkaban, H., Barani, M., Akbarizadeh, M. R., Pal Singh Chauhan, N., Jadoun, S., Dehghani Soltani, M., & Zarrintaj, P. (2022). Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel), 14(6). doi:10.3390/polym14061259
[100] Padwal, P., Bandyopadhyaya, R., & Mehra, S. (2014). Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir, 30(50), 15266-15276. doi:10.1021/la503808d
[101] Bardajee, G. R., Mizani, F., & Hosseini, S. S. (2017). pH sensitive release of doxorubicin anticancer drug from gold nanocomposite hydrogel based on poly(acrylic acid) grafted onto salep biopolymer. Journal of Polymer Research, 24(3). doi:10.1007/s10965-017-1197-4
[102] Xu, M., Zhu, J., Wang, F., Xiong, Y., Wu, Y., Wang, Q., Weng, J., Zhang, Z., Chen, W., & Liu, S. (2016). Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation. ACS Nano, 10(3), 3267-3281. doi:10.1021/acsnano.6b00539
[103] Ahmad, F., Salem-Bekhit, M. M., Khan, F., Alshehri, S., Khan, A., Ghoneim, M. M., Wu, H. F., Taha, E. I., & Elbagory, I. (2022). Unique Properties of SurfaceFunctionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Nanomaterials (Basel), 12(8). doi:10.3390/nano12081333
[104] Lee, C., Drelich, J., & Yap, Y. (2009). Superhydrophobicity of boron nitride nanotubes grown on silicon substrates. Langmuir, 25(9), 4853-4860. doi:10.1021/la900511z
[105] Pakdel, A., Zhi, C., Bando, Y., Nakayama, T., & Golberg, D. (2011). Boron nitride nanosheet coatings with controllable water repellency. ACS Nano, 5(8), 6507-6515.
[106] Zhi, C., Bando, Y., Wang, W., Tang, C., Kuwahara, H., & Golberg, D. (2007). DNAmediated assembly of boron nitride nanotubes. Chem Asian J, 2(12), 1581-1585. doi:10.1002/asia.200700246
[107] Zhang, H., Feng, S., Yan, T., Zhi, C., Gao, X. D., & Hanagata, N. (2015). Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Int J Nanomedicine, 10, 5343-5353. doi:10.2147/IJN.S88774
[108] Tang, C., Bando, Y., Huang, Y., Yue, S., Gu, C., Xu, F., & Golberg, D. (2005). Fluorination and electrical conductivity of BN nanotubes. Journal of the American Chemical Society, 127(18), 6552-6553.
[109] Ikuno, T., Sainsbury, T., Okawa, D., Fréchet, J. M. J., & Zettl, A. (2007). Aminefunctionalized boron nitride nanotubes. Solid State Communications, 142(11), 643- 646. doi:10.1016/j.ssc.2007.04.010
[110] Zhi, C. Y., Bando, Y., Terao, T., Tang, C. C., Kuwahara, H., & Golberg, D. (2009). Chemically activated boron nitride nanotubes. Chem Asian J, 4(10), 1536-1540. doi:10.1002/asia.200900158
[111] Ciofani, G., Genchi, G. G., Liakos, I., Athanassiou, A., Dinucci, D., Chiellini, F., &
Mattoli, V. (2012). A simple approach to covalent functionalization of boron nitride nanotubes. J Colloid Interface Sci, 374(1), 308-314. doi:10.1016/j.jcis.2012.01.049
[112] Lan, K. W., Huang, W. Y., Chiu, Y. L., Hsu, F. T., Chien, Y. C., Hsiau, Y. Y., Wang, T. W., & Keng, P. Y. (2023). In vivo investigation of boron-rich nanodrugs for treating triple-negative breast cancers via boron neutron capture therapy. Biomater Adv, 155, 213699. doi:10.1016/j.bioadv.2023.213699
[113] Chien, Y.-C., Hsu, Y.-T., Chiang, C.-W., Keng, P. Y., & Wang, T.-W. (2023). Investigating the electrostatic complexation of BCNO nanoparticles with a stimuliresponsive double hydrophilic graft copolymer. Giant, 14. doi:10.1016/j.giant.2023.100162
[114] Attia, M. F., Anton, N., Wallyn, J., Omran, Z., & Vandamme, T. F. (2019). An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol, 71(8), 1185-1198. doi:10.1111/jphp.13098
[115] Onzi, G., Guterres, S. S., Pohlmann, A. R., & Frank, L. A. (2021). Passive Targeting and the Enhanced Permeability and Retention (EPR) Effect. In The ADME Encyclopedia (pp. 1-13).
[116] Wu, J. (2021). The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J Pers Med, 11(8). doi:10.3390/jpm11080771
[117] Ikeda-Imafuku, M., Wang, L. L., Rodrigues, D., Shaha, S., Zhao, Z., & Mitragotri, S. (2022). Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. J Control Release, 345, 512-536. doi:10.1016/j.jconrel.2022.03.043
[118] Kommareddy, S., Tiwari, S. B., & Amiji, M. M. (2005). Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technology in cancer research & treatment, 4(6), 615-625. doi:10.1177/153303460500400605
[119] Dvorak, H. F. (2003). How tumors make bad blood vessels and stroma. The American journal of pathology, 162(6), 1747-1757.
[120] Padera, T. P., Kadambi, A., di Tomaso, E., Carreira, C. M., Brown, E. B., Boucher, Y., Choi, N. C., Mathisen, D., Wain, J., & Mark, E. J. (2002). Lymphatic metastasis in the absence of functional intratumor lymphatics. Science, 296(5574), 1883-1886.
[121] Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 46(12_Part_1), 6387-6392.
[122] Foroozandeh, P., & Aziz, A. A. (2018). Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res Lett, 13(1), 339. doi:10.1186/s11671-018-2728-6
[123] Di, J., Gao, X., Du, Y., Zhang, H., Gao, J., & Zheng, A. (2021). Size, shape, charge and "stealthy" surface: Carrier properties affect the drug circulation time in vivo. Asian J Pharm Sci, 16(4), 444-458. doi:10.1016/j.ajps.2020.07.005
[124] Caster, J. M., Yu, S. K., Patel, A. N., Newman, N. J., Lee, Z. J., Warner, S. B., Wagner, K. T., Roche, K. C., Tian, X., Min, Y., & Wang, A. Z. (2017). Effect of particle size on the biodistribution, toxicity, and efficacy of drug-loaded polymeric nanoparticles
in chemoradiotherapy. Nanomedicine: Nanotechnology, Biology and Medicine, 13(5), 1673-1683. doi:10.1016/j.nano.2017.03.002
[125] Nel, A. E., Madler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater, 8(7), 543-557. doi:10.1038/nmat2442
[126] Jasinski, D. L., Li, H., & Guo, P. (2018). The Effect of Size and Shape of RNA Nanoparticles on Biodistribution. Mol Ther, 26(3), 784-792. doi:10.1016/j.ymthe.2017.12.018
[127] Trapani, G., Denora, N., Trapani, A., & Laquintana, V. (2012). Recent advances in ligand targeted therapy. J Drug Target, 20(1), 1-22. doi:10.3109/1061186X.2011.611518
[128] Bazak, R., Houri, M., El Achy, S., Kamel, S., & Refaat, T. (2015). Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol, 141(5), 769-784. doi:10.1007/s00432-014-1767-3
[129] Wu, C. Y., Lin, J. J., Chang, W. Y., Hsieh, C. Y., Wu, C. C., Chen, H. S., Hsu, H. J., Yang, A. S., Hsu, M. H., & Kuo, W. Y. (2019). Development of theranostic activetargeting boron-containing gold nanoparticles for boron neutron capture therapy (BNCT). Colloids Surf B Biointerfaces, 183, 110387.doi:10.1016/j.colsurfb.2019.110387
[130] Sun, T., Li, Y., Huang, Y., Zhang, Z., Yang, W., Du, Z., & Zhou, Y. (2016). Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy. Oncotarget, 7(28), 43095. doi:10.18632/oncotarget.9355
[131] Tang, H., Wang, Z., Hao, H., Luo, W., Yang, J., Li, M., Yang, M., Chen, Z., Yan, R., Li, H., Hu, F., Liang, H., Liu, Q., Lv, L., Zhang, J., Su, W., Chen, R., Chen, K., Chang, Y. N., Wang, M., Zheng, L., Feng, X., Li, J., & Xing, G. (2024). BoronContaining Mesoporous Silica Nanoparticles with Effective Delivery and Targeting of Liver Cancer Cells for Boron Neutron Capture Therapy. ACS Appl Mater Interfaces. doi:10.1021/acsami.4c02897
[132] Ciofani, G., Raffa, V., Menciassi, A., & Cuschieri, A. (2008). Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy. Nanoscale Res Lett, 4(2), 113-121. doi:10.1007/s11671-008- 9210-9
[133] Achilli, C., Grandi, S., Ciana, A., Guidetti, G. F., Malara, A., Abbonante, V., Cansolino, L., Tomasi, C., Balduini, A., Fagnoni, M., Merli, D., Mustarelli, P., Canobbio, I., Balduini, C., & Minetti, G. (2014). Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application. Nanomedicine, 10(3), 589-597. doi:10.1016/j.nano.2013.10.003
[134] Steinhauser, I., Spankuch, B., Strebhardt, K., & Langer, K. (2006). Trastuzumabmodified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials, 27(28), 4975-4983. doi:10.1016/j.biomaterials.2006.05.016
[135] Hodi, F. S., O'day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J. C., Akerley, W., Eertwegh, V. D., Lutzky, J., Lorigan, P., Vaubel, J. M., Linette, G. P., Hogg, D., Ottensmeier, C. H., Lebbe, C., Peschel, C., Quirt, I., Clark, J. I., Wolchok, J. D., Weber, J. S., Tain, J., Yellin, M. J., Nichol, G. M., Hoo, A., & Urba, W. J. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363(8), 711-723. doi:10.1056/NEJMoa1003466
[136] Brahmer, J. R., Hammers, H., & Lipson, E. J. (2015). Nivolumab: targeting PD-1 to bolster antitumor immunity. Future oncology, 11(9), 1307-1326.
[137] Fischer, R., Twyman, R. M., & Schillberg, S. (2003). Production of antibodies in plants and their use for global health. Vaccine, 21(7-8), 820-825. doi:10.1016/S0264-410X(02)00607-2
[138] Kaur, N., Popli, P., Tiwary, N., & Swami, R. (2023). Small molecules as cancer targeting ligands: Shifting the paradigm. J Control Release, 355, 417-433. doi:10.1016/j.jconrel.2023.01.032
[139] Hong, M., Zhu, S., Jiang, Y., Tang, G., & Pei, Y. (2009). Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J Control Release, 133(2), 96-102. doi:10.1016/j.jconrel.2008.09.005
[140] Matherly, L. H., Hou, Z., & Deng, Y. (2007). Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev, 26(1), 111-128. doi:10.1007/s10555-007-9046-2
[141] Stover, P. J. (2004). Physiology of folate and vitamin B12 in health and disease. Nutr Rev, 62(6 Pt 2), S3-12; discussion S13. doi:10.1111/j.1753-4887.2004.tb00070.x
[142] Chen, C., Ke, J., Zhou, X. E., Yi, W., Brunzelle, J. S., Li, J., Yong, E. L., Xu, H. E., & Melcher, K. (2013). Structural basis for molecular recognition of folic acid by folate receptors. Nature, 500(7463), 486-489. doi:10.1038/nature12327
[143] Elnakat, H., & Ratnam, M. (2004). Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev, 56(8), 1067-1084. doi:10.1016/j.addr.2004.01.001
[144] Cheung, A., Bax, H. J., Josephs, D. H., Ilieva, K. M., Pellizzari, G., Opzoomer, J., Bloomfield, J., Fittall, M., Grigoriadis, A., & Figini, M. (2016). Targeting folate receptor alpha for cancer treatment. Oncotarget, 7(32), 52553.
[145] Zhao, R., Matherly, L. H., & Goldman, I. D. (2009). Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med, 11, e4. doi:10.1017/S1462399409000969
[146] Xia, W., & Low, P. S. (2010). Folate-targeted therapies for cancer. J Med Chem, 53(19), 6811-6824. doi:10.1021/jm100509v
[147] Fernandez, M., Javaid, F., & Chudasama, V. (2018). Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci, 9(4), 790-810. doi:10.1039/c7sc04004k
[148] Leamon, C. P., & Low, P. S. (1991). Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proceedings of the National Academy of Sciences, 88(13), 5572-5576. doi:10.1073/pnas.88.13.5572
[149] Tagde, P., Kulkarni, G. T., Mishra, D. K., & Kesharwani, P. (2020). Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. Journal of Drug Delivery Science and Technology, 56. doi:10.1016/j.jddst.2020.101613
[150] Yang, J., Chen, H., Vlahov, I. R., Cheng, J. X., & Low, P. S. (2006). Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proceedings of the National Academy of Sciences, 103(37), 13872-13877. doi:10.1073/pnas.0601455103
[151] Necela, B. M., Crozier, J. A., Andorfer, C. A., Lewis-Tuffin, L., Kachergus, J. M., Geiger, X. J., Kalari, K. R., Serie, D. J., Sun, Z., Moreno-Aspitia, A., O'Shannessy, D. J., Maltzman, J. D., McCullough, A. E., Pockaj, B. A., Cunliffe, H. E., Ballman, K. V., Thompson, E. A., & Perez, E. A. (2015). Folate receptor-alpha (FOLR1) expression and function in triple negative tumors. PLoS One, 10(3), e0122209. doi:10.1371/journal.pone.0122209
[152] Bax, H. J., Chauhan, J., Stavraka, C., Santaolalla, A., Osborn, G., Khiabany, A., Grandits, M., Lopez-Abente, J., Palhares, L., Chan Wah Hak, C., Robinson, A., Pope, A., Woodman, N., Naceur-Lombardelli, C., Malas, S., Coumbe, J. E. M., Nakamura, M., Laddach, R., Mele, S., Crescioli, S., Black, A. M., Lombardi, S., Canevari, S., Figini, M., Sayasneh, A., Tsoka, S., FitzGerald, K., Gillett, C., Pinder, S., Van Hemelrijck, M., Kristeleit, R., Ghosh, S., Montes, A., Spicer, J., Karagiannis, S. N., & Josephs, D. H. (2023). Folate receptor alpha in ovarian cancer tissue and patient serum is associated with disease burden and treatment outcomes. Br J Cancer, 128(2), 342-353. doi:10.1038/s41416-022-02031-x
[153] Li, H., Li, B., Pan, Y., Zhang, Y., Xiang, J., Zhang, Y., Sun, Y., Yu, X., He, W., & Hu, H. (2020). Preoperative Folate Receptor-Positive Circulating Tumor Cell Level Is a Prognostic Factor of Long Term Outcome in Non-Small Cell Lung Cancer Patients. Front Oncol, 10, 621435. doi:10.3389/fonc.2020.621435
[154] Yan, S., Guo, W., Liu, Y., Li, K., & Wang, W. (2022). The role of folate receptorpositive circulating tumor cell analysis in the diagnosis of colorectal cancer: a retrospective cohort study. International Journal of Clinical Oncology, 27(3), 538-544.
[155] Singh, A., Kim, B. K., Mackeyev, Y., Rohani, P., Mahajan, S. D., Swihart, M. T., Krishnan, S., & Prasad, P. N. (2019). Boron-Nanoparticle-Loaded Folic-AcidFunctionalized Liposomes to Achieve Optimum Boron Concentration for Boron Neutron Capture Therapy of Cancer. J Biomed Nanotechnol, 15(8), 1714-1723. doi:10.1166/jbn.2019.2800
[156] Mandal, S., Bakeine, G. J., Krol, S., Ferrari, C., Clerici, A. M., Zonta, C., Cansolino, L., Ballarini, F., Bortolussi, S., Stella, S., Protti, N., Bruschi, P., & Altieri, S. (2011). Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications. Appl Radiat Isot, 69(12), 1692-1697. doi:10.1016/j.apradiso.2011.05.002
[157] Permyakova, E. S., Sukhorukova, I. V., Antipina, L. Y., Konopatsky, A. S., Kovalskii, A. M., Matveev, A. T., Lebedev, O. I., Golberg, D. V., Manakhov, A. M., & Shtansky, D. V. (2017). Synthesis and Characterization of Folate Conjugated Boron Nitride Nanocarriers for Targeted Drug Delivery. The Journal of Physical Chemistry C, 121(50), 28096-28105. doi:10.1021/acs.jpcc.7b10841
[158] Shukla, S., Wu, G., Chatterjee, M., Yang, W., Sekido, M., Diop, L. A., Muller, R., Sudimack, J. J., Lee, R. J., Barth, R. F., & Tjarks, W. (2003). Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy. Bioconjugate chemistry, 14(1), 158-167. doi:10.1021/bc025586o
[159] Matsumoto, Y., Hattori, K., Arima, H., Motoyama, K., Higashi, T., Ishikawa, H., Fukumitsu, N., Aihara, T., Nakai, K., Kumada, H., & Sakurai, H. (2020). Folateappended cyclodextrin improves the intratumoral accumulation of existing boron compounds. Appl Radiat Isot, 163, 109201. doi:10.1016/j.apradiso.2020.109201
[160] Marshalek, J. P., Sheeran, P. S., Ingram, P., Dayton, P. A., Witte, R. S., & Matsunaga, T. O. (2016). Intracellular delivery and ultrasonic activation of folate receptortargeted phase-change contrast agents in breast cancer cells in vitro. J Control Release, 243, 69-77. doi:10.1016/j.jconrel.2016.09.010
[161] Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA Cancer J Clin, 73(1), 17-48. doi:10.3322/caac.21763
[162] Won, K. A., & Spruck, C. (2020). Triple‑negative breast cancer therapy: Current and future perspectives (Review). Int J Oncol, 57(6), 1245-1261. doi:10.3892/ijo.2020.5135
[163] Nedeljkovic, M., & Damjanovic, A. (2019). Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells, 8(9). doi:10.3390/cells8090957
[164] Kuo, W. Y., Hwu, L., Wu, C. Y., Lee, J. S., Chang, C. W., & Liu, R. S. (2017). STAT3/NF-kappaB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer. Theranostics, 7(3), 647-663. doi:10.7150/thno.16827
[165] Bergin, A. R. T., & Loi, S. (2019). Triple-negative breast cancer: recent treatment advances. F1000Res, 8. doi:10.12688/f1000research.18888.1
[166] Seneviratne, D., Advani, P., Trifiletti, D. M., Chumsri, S., Beltran, C. J., Bush, A. F., & Vallow, L. A. (2022). Exploring the Biological and Physical Basis of Boron Neutron Capture Therapy (BNCT) as a Promising Treatment Frontier in Breast Cancer. Cancers (Basel), 14(12). doi:10.3390/cancers14123009
[167] Ledermann, J. A., Canevari, S., & Thigpen, T. (2015). Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Ann Oncol, 26(10), 2034-2043. doi:10.1093/annonc/mdv250
[168] Zhang, Z., Wang, J., Tacha, D. E., Li, P., Bremer, R. E., Chen, H., Wei, B., Xiao, X., Da, J., Skinner, K., Hicks, D. G., Bu, H., & Tang, P. (2014). Folate receptor alpha associated with triple-negative breast cancer and poor prognosis. Arch Pathol Lab Med, 138(7), 890-895. doi:10.5858/arpa.2013-0309-OA
[169] Nateghian, N., Goodarzi, N., Amini, M., Atyabi, F., Khorramizadeh, M. R., & Dinarvand, R. (2016). Biotin/Folate-decorated Human Serum Albumin Nanoparticles of Docetaxel: Comparison of Chemically Conjugated Nanostructures and Physically Loaded Nanoparticles for Targeting of Breast Cancer. Chem Biol Drug Des, 87(1), 69-82. doi:10.1111/cbdd.12624
[170] Kumar, P., Tambe, P., Paknikar, K. M., & Gajbhiye, V. (2017). Folate/N-acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study. Colloids Surf B Biointerfaces, 156, 203-212. doi:10.1016/j.colsurfb.2017.05.032
[171] Erdogar, N., Esendagli, G., Nielsen, T. T., Sen, M., Oner, L., & Bilensoy, E. (2016). Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles. Int J Pharm, 509(1-2), 375-390. doi:10.1016/j.ijpharm.2016.05.040
[172] Off, M. K., Steindal, A. E., Porojnicu, A. C., Juzeniene, A., Vorobey, A., Johnsson, A., & Moan, J. (2005). Ultraviolet photodegradation of folic acid. J Photochem Photobiol B, 80(1), 47-55. doi:10.1016/j.jphotobiol.2005.03.001
[173] Parvathaneni, V., Shukla, S. K., & Gupta, V. (2023). Development and Characterization of Folic Acid-Conjugated Amodiaquine-Loaded NanoparticlesEfficacy in Cancer Treatment. Pharmaceutics, 15(3).
doi:10.3390/pharmaceutics15031001
[174] Matsukizono, H., & Endo, T. (2015). Synthesis of polyhydroxyurethanes from di (trimethylolpropane) and their application to quaternary ammonium chloridefunctionalized films. RSC Advances, 5(87), 71360-71369. doi:10.1039/x0xx00000x
[175] Fasehee, H., Dinarvand, R., Ghavamzadeh, A., Esfandyari-Manesh, M., Moradian, H., Faghihi, S., & Ghaffari, S. H. (2016). Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations. J Nanobiotechnology, 14, 32. doi:10.1186/s12951-016-0183-z
[176] He, Z., Huang, J., Xu, Y., Zhang, X., Teng, Y., Huang, C., Wu, Y., Zhang, H., & Sun, W. (2015). Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget, 6(39), 42150. doi:10.18632/oncotarget.6243
[177] Xu, Q., He, C., Xiao, C., & Chen, X. (2016). Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromolecular Bioscience, 16(5), 635-646. doi:10.1002/mabi.201500440
[178] Richardi, J. (2009). One-dimensional assemblies of charged nanoparticles in water: A simulation study. J Chem Phys, 130(4), 044701. doi:10.1063/1.3058747
[179] Generalova, A. N., Oleinikov, V. A., & Khaydukov, E. V. (2021). One-dimensional necklace-like assemblies of inorganic nanoparticles: Recent advances in design, preparation and applications. Adv Colloid Interface Sci, 297, 102543. doi:10.1016/j.cis.2021.102543
[180] Trefalt, G., & Borkovec, M. (2014). Overview of DLVO theory. Laboratory of Colloid and Surface Chemistry, University of Geneva, Switzerland, 304.
[181] Babick, F. (2016). Suspensions of colloidal particles and aggregates (Vol. 20). Berlin/Heidelberg, Germany: Springer.
[182] Yu, S., Liao, P., Zhang, Y., Li, Y., Tian, H., Li, R., Liu, S., Yao, Z., Li, Z., Wang, Y.,
Zhang, L. Y., U, S., Guo, J., Wang, L., Bai, S., Chen, J., Bai, X., & Liu, L. (2023). Hydrogen‐Bond‐Mediated Surface Functionalization of Boron Nitride Micro‐Lamellae toward High Thermal Conductive Papers. Advanced Materials Interfaces, 10(10). doi:10.1002/admi.202202196
[183] Ren, J., Stagi, L., & Innocenzi, P. (2020). Hydroxylated boron nitride materials: from structures to functional applications. Journal of Materials Science, 56(6), 4053-4079. doi:10.1007/s10853-020-05513-6
[184] Guo, Y., Yan, C., Wang, P., Rao, L., & Wang, C. (2020). Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution. Chemical Engineering Journal, 387. doi:10.1016/j.cej.2020.124136
[185] Fee, C. J., & Van Alstine, J. M. (2006). PEG-proteins: reaction engineering and separation issues. Chemical engineering science, 61(3), 924-939.
[186] Veronese, F. M., & Mero, A. (2008). The impact of PEGylation on biological therapies. BioDrugs, 22, 315-329.
[187] Yi, C., Yang, Y., Liu, B., He, J., & Nie, Z. (2020). Polymer-guided assembly of inorganic nanoparticles. Chem Soc Rev, 49(2), 465-508. doi:10.1039/c9cs00725c
[188] Zhao, J., Lu, H., Wong, S., Lu, M., Xiao, P., & Stenzel, M. H. (2017). Influence of nanoparticle shapes on cellular uptake of paclitaxel loaded nanoparticles in 2D and 3D cancer models. Polymer Chemistry, 8(21), 3317-3326. doi:10.1039/c7py00385d
[189] Sylvestre, M., Crane, C. A., & Pun, S. H. (2020). Progress on Modulating TumorAssociated Macrophages with Biomaterials. Adv Mater, 32(13), e1902007. doi:10.1002/adma.201902007
[190] Zhang, H., & Wang, D. (2008). Controlling the Growth of Charged‐Nanoparticle Chains through Interparticle Electrostatic Repulsion. Angewandte Chemie, 120(21), 4048-4051. doi:10.1002/ange.200705537
[191] Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? J Control Release, 235, 337-351. doi:10.1016/j.jconrel.2016.06.017
[192] Index, P. Z-Average size.
[193] Nie, L., Chang, P., Ji, C., Zhang, F., Zhou, Q., Sun, M., Sun, Y., Politis, C., & Shavandi, A. (2021). Poly(acrylic acid) capped iron oxide nanoparticles via ligand exchange with antibacterial properties for biofilm applications. Colloids Surf B Biointerfaces, 197, 111385. doi:10.1016/j.colsurfb.2020.111385
[194] Joksimovic, R., Prevost, S., Schweins, R., Appavou, M. S., & Gradzielski, M. (2013). Interactions of silica nanoparticles with poly(ethylene oxide) and poly(acrylic acid): effect of the polymer molecular weight and of the surface charge. J Colloid Interface Sci, 394, 85-93. doi:10.1016/j.jcis.2012.11.073
[195] Nobs, L., Buchegger, F., Gurny, R., & Allémann, E. (2004). Current methods for attaching targeting ligands to liposomes and nanoparticles. Journal of pharmaceutical sciences, 93(8), 1980-1992. doi:10.1002/jps.20098
[196] Suvarna, M., Dyawanapelly, S., Kansara, B., Dandekar, P., & Jain, R. (2018). Understanding the Stability of Nanoparticle–Protein Interactions: Effect of Particle Size on Adsorption, Conformation and Thermodynamic Properties of Serum Albumin Proteins. ACS Applied Nano Materials, 1(10), 5524-5535.
doi:10.1021/acsanm.8b01019
[197] Miles, W. C., Goff, J. D., Huffstetler, P. P., Reinholz, C. M., Pothayee, N., Caba, B. L., Boyd, J. S., Davis, R. M., & Riffle, J. S. (2009). Synthesis and Colloidal Properties of Polyether− Magnetite Complexes in Water and Phosphate-Buffered Saline. Langmuir, 25(2), 803-813.
[198] Umh, H. N., & Kim, Y. (2014). Sensitivity of nanoparticles’ stability at the point of zero charge (PZC). Journal of Industrial and Engineering Chemistry, 20(5), 3175-3178. doi:10.1016/j.jiec.2013.11.062
[199] Ginter, P. S., McIntire, P. J., Cui, X., Irshaid, L., Liu, Y., Chen, Z., & Shin, S. J.
(2017). Folate receptor alpha expression is associated with increased risk of recurrence in triple-negative breast cancer. Clinical breast cancer, 17(7), 544-549.
[200] Wang, Y., Chen, X., He, D., Zhou, Y., & Qin, L. (2018). Surface-Modified Nanoerythrocyte Loading DOX for Targeted Liver Cancer Chemotherapy. Mol Pharm, 15(12), 5728-5740. doi:10.1021/acs.molpharmaceut.8b00881
[201] Jones, S. K., Sarkar, A., Feldmann, D. P., Hoffmann, P., & Merkel, O. M. (2017). Revisiting the value of competition assays in folate receptor-mediated drug delivery. Biomaterials, 138, 35-45. doi:10.1016/j.biomaterials.2017.05.034
[202] Phoenix, B., Green, S., Hill, M. A., Jones, B., Mill, A., & Stevens, D. L. (2009). Do the various radiations present in BNCT act synergistically? Cell survival experiments in mixed alpha-particle and gamma-ray fields. Appl Radiat Isot, 67(7-8 Suppl), S318-320. doi:10.1016/j.apradiso.2009.03.097
[203] Costa, E. C., Moreira, A. F., de Melo-Diogo, D., Gaspar, V. M., Carvalho, M. P., & Correia, I. J. (2016). 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv, 34(8), 1427-1441. doi:10.1016/j.biotechadv.2016.11.002
[204] Tredan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst, 99(19), 1441-1454. doi:10.1093/jnci/djm135
[205] Stevens, V. L., McCullough, M. L., Sun, J., & Gapstur, S. M. (2010). Folate and other one-carbon metabolism-related nutrients and risk of postmenopausal breast cancer in the Cancer Prevention Study II Nutrition Cohort. Am J Clin Nutr, 91(6), 1708-1715. doi:10.3945/ajcn.2009.28553
[206] Helmy, L. A., Abdel-Halim, M., Hassan, R., Sebak, A., Farghali, H. A. M., Mansour, S., & Tammam, S. N. (2022). The other side to the use of active targeting ligands; the case of folic acid in the targeting of breast cancer. Colloids Surf B Biointerfaces, 211, 112289. doi:10.1016/j.colsurfb.2021.112289