研究生: |
林博煦 Lin,Po-Hsu |
---|---|
論文名稱: |
車用輔助動力高溫燃料電池動態觀測與啟動控制 Dynamic Observer and Start-up Control of High Temperature Fuel Cell Systems for Automotive Applications |
指導教授: |
洪哲文
Hong,Che-Wun |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 100 |
中文關鍵詞: | 固態氧化物燃料電池 、啟動動態觀測 、滑動估測器 、滑動控制器 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A dynamic model for studying the cold start dynamics of a high temperature solid oxide fuel cell (SOFC) auxiliary power unit (APU) for automotive applications was set up. The SOFC APU system is implemented with a combustion chamber, which burns the residual fuel and air from the fuel cell to provide high temperature gas to preheat the SOFC stack through an energy recovery unit. A nonlinear real-time sliding observer for stack temperature evaluation was coded into the system dynamics to monitor the temperature variation. The simulation results show that a 100W APU system in this research takes about 2 minutes for start-up without considering the thermal limitation of the cell material. This small scale APU system is able to provide additional power to automotive electronics when the engine is off.
A second example is to design a stand-alone power plant for either automotive power application or a distributed power generation system. A conceptual turbo fuel cell system, including SOFC stack, afterburner, turbo generator and heat exchanger subsystems, is modeled using a modified filling-and-emptying approach. The simulation results show that the start-up time for the example turbo fuel cell system (200 kW SOFC plus 50 kW MGT) may take up to more than one hour.
In summary, a modified filling-and-emptying model based on mass and energy conservation laws has been developed to configure the general system dynamics of high temperature SOFC systems. Transient simulations of two example SOFC systems were carried out via a self-written dynamic code based on the Matlab/Simulink platform. A nonlinear sliding observer for on-line tracking temperature dynamics has been set up for startup control, whose targets are either on rapid or safety start-up. A model-based controller, including PI and sliding controls, has been designed for these purposes.
[1] USDOE, Fuel Cell Handbook Seventh Edition, November 2004.
[2] Al-Qattan, A. M., Chmielewski, D. J., Al-Hallaj, S. and Selmam, J. R., 2004, “A novel design for solid oxide fuel cell stacks,” Chem. Engineering Science, Vol. 59 (1), p.p. 131-137.
[3] Selimovic, A., Kemm, M., Torisson, T. and Assadi, M., 2005, “Steady state and transient thermal stress analysis in planar solid oxide fuel cells,” J. Power Sources, Vol. 145 (2), p.p. 463-469.
[4] Malzbender, K, and Steinbrech, R. W., 2008, “Threshold fracture stress of thin ceramic components,” J. European Ceramic Society, Vol. 28 (1), p.p. 247-252.
[5] Giraud, S. and Canel, J., 2008, “Young’s modulus of some SOFCs materials as a function of temperature,” J. European Ceramic Society, Vol. 28 (1), p.p. 77-83.
[6] Smeacetto, F., Salvo, M., Ferraris, M., Casalegno, V. and Asinari, P., 2008, “Glass and composite seals for the joining of YSZ to metallic interconnect in solid oxide fuel cells,” J. European Ceramic Society, Vol. 28 (3), p.p. 611-616.
[7] Recknagle, K. P., Williford, R. E., Chick, L. A., Rector, D. R. and Khaleel, M. A., 2003, “Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks,” J. Power Sources, Vol.113 (1), p.p. 109-114.
[8] Achenbach, E., 1994, “Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack,” J. Power Sources, Vol.49 (1-3), p.p. 333-348.
[9] Larrain, D., Van herle, J., Mar□chal, F. and Favrat, D., 2003, “Thermal modeling of a small anode support solid oxide fuel cell,” J. Power Sources, Vol. 118 (1-2), p.p. 367-374.
[10] Kakac, S., Pramuanjaroenkij, A. and Zhou, X. Y., 2007, “A review of numerical modeling of solid oxide fuel cells,” Int. J. Hydrogen Energy, Vol. 32 (7), p.p. 761-786.
[11] Padull□s, J., Ault, G. W. and McDonald, J. R., 2000, “An integrated SOFC plant dynamic model for power systems simulation,” J. Power Sources, Vol. 86 (1-2), p.p. 495-500.
[12] Ota, T., Koyama, M., Wen, C. J., Yamada, K.and Takahashi, H., 2003, “Object-based modeling of SOFC system: dynamic behavior of micro-tube SOFC,” J. Power Sources, Vol.118 (1-2), p.p. 430-439.
[13] Huang, Q. A., Hui, R., Wang, B. and Zhang, J., 2007, “A review of AC impedance modeling and validation in SOFC diagnosis,” Electrochimica Acta, Vol. 52 (28), p.p. 8144-8164.
[14] Bessler, W. G., Gewies, S. and Volger, M., 2007, “A new framework for physically based modeling of solid oxide fuel cells,” Electrochimica Acta, Vol. 53 (4), p.p. 1782-1800.
[15] Yakabe, H., Ogiwara, T., Hishinuma, M. and Yusuda, I., 2001, “3-D model calculation for planar SOFC,” J. Power Sources, Vol.102 (1-2), p.p. 144-154.
[16] Haynes, C., 2002, “Simulating process settings for unslaved SOFC response to increase in load demand,” J. Power Sources, Vol.109 (2), p.p. 365-376.
[17] Lin, P. H. and Hong, C. W., 2006, “On the start-up transient simulation of a turbo fuel cell system,” J. Power Sources, Vol. 160 (2), p.p. 1230-1241.
[18] Petruzzi, L., Cocchi, S. and Fineschi, F., 2003, “A global thermo-electrochemical model for SOFC systems design and engineering,” J. Power Sources, Vol.118 (1-2), p.p. 96-107.
[19] Aguiar, P., Chadwick, D. and Kershenbaum, L., 2002, “Modelling of an indirect internal reforming solid oxide fuel cell,” Chemical Engineering Science, Vol.57 (10), p.p. 1665-1677.
[20] Jurado, F., 2004, “Modeling SOFC plants on the distribution system using identification algorithms,” J. Power Sources, Vol.129 (2), p.p. 205-215.
[21] Lee, G. T. and Sudhoff, F. A., 1996, “Fuel cell/gas turbine system performance studies, Proceedings of the Fuel Cell 1996 Review Meeting,” U.S. DOE/METC, Morgantown, WV, Aug. 20-21, 1996.
[22] Veyo, S. E., Shockling, L. A., Dederer, J. T., Gillett, J. E. and Lundberg, W. L., 2002, “Tubular solid oxide fuel cell/gas turbine hybrid cycle power systems: status,” J. Eng. for Gas Turbines and Power, Vol.124 (4), p.p. 845-849.
[23] Lundberg, W. L., Veyo, S. E. and Moeckel, M. D., 2003, “A high-efficiency solid oxide fuel cell hybrid power using the Mercury 50 advanced turbine system gas turbine,” J. Eng. for Gas turbines and Power, Vol.125 (1), p.p. 51-58.
[24] Krumdieck, S., Page, S. and Round, S., 2004, “Solid oxide fuel cell architecture and system design for secure power on an unstable grid,” J. Power Sources, Vol.125 (2), p.p. 189-198.
[25] Masaardo, A. F. and Lubelli, F., 2000, “Internal reforming solid oxide fuel cell-gas turbine combined cycles (IRSOFC-GT): Part A – cell model and cycle thermodynamic analysis,” J. Eng. for Gas Turbines and Power, Vol.122 (1), p.p. 27-35.
[26] Zhu, Y. and Tomsovic, K., 2002, “Development of models for analyzing the load-following performance of microturbines and fuel cells,” Electric Power System Research, Vol.62 (1), p.p. 1-11.
[27] Riensche, E., Achenbach, E., Froning, D., Haines, M. R., Heidug, W. K., Lokurlu, A. and Andrian, S. V., 2000, “Clean combined-cycle SOFC power plant – cell modeling and process analysis,” J. Power Sources, Vol.86 (1-2), p.p. 404-410.
[28] Palsson, J., Selimovic, A. and Sjunnesson, L., 2000, “Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation,” J. Power Sources, Vol.86 (1-2), p.p. 442-448.
[29] Campanari, S., 2000, “Full load and part-load performance prediction for integrated SOFC and microturbine systems,” J. Eng. Gas for Turbines and Power, Vol.122 (2), p.p. 239-246.
[30] Costamagna, P., Magistri, L. and Massardo, A. F., 2001, “Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine,” J. Power Sources, Vol.96 (2), p.p. 352-368.
[31] Winkler, W. and Lorenz, H., 2002, “The design of stationary and mobile solid oxide fuel cell-gas turbine,” J. Power Sources, 105 (2), p.p. 222-227.
[32] Cunnel, C., Pangalis, M. G. and Martinez-Botas, R. F., 2002, “Integration of solid oxide fuel cells into gas turbine power generation cycles. Part 2: hybrid model for various integration schemes,” Proc. Institution of Mechanical Engineers. Vol.216 (2), p.p. 145-154.
[33] Kimijima, S. and Kasagi, N., 2002, “Performance evaluation of gas turbine-fuel cell hybrid micro generation system,” Proc. ASME Turbo Expo 2002.
[34] Chan, S.H., Ho, H.K. and Tian, Y., 2002, “Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant,” J. Power Sources, Vol.109 (1), p.p. 111-120.
[35] Chan, S.H., Ho, H.K. and Tian, Y., 2003, “Multi-level modeling of SOFC-gas turbine hybrid system,” Int. J. Hydrogen Energy, 28 (8), p.p. 889-900.
[36] Magistri, L., Trasino, F. and Costamagna, P., 2004, “Transient analysis of solid oxide fuel cell hybrids Part A: fuel cell models,” Proc. ASME Turbo Expo 2004.
[37] Magistri, L., Trasino, F. and Costamagna, P., 2004, “Transient analysis of solid oxide fuel cell hybrids Part B: anode recirculation model,” Proc. ASME Turbo Expo 2004.
[38] Magistri, L., Trasino, F. and Costamagna, P., 2004, “Transient analysis of solid oxide fuel cell hybrids Part C: whole cycle model,” Proc. ASME Turbo Expo 2004.
[39] Roberts, R. A. and Brouwer, J., 2006, “Dynamic simulation of a pressurized 220 kW solid oxide fuel-cell-gas-turbine hybrid system: modeled performance compared to measured results,” J. Fuel cell Science and Technology, Vol. 3 (1), p.p. 18-25.
[40] Mueller, F., Jabbari, F., Brouwer, J., Roberts, R., Junker, T. and Ghezel-Ayagh, H., 2007, “Control design for a bottoming solid oxide fuel cell gas turbine hybrid system,” J. Fuel cell Science and Technology, Vol. 4 (), p.p. 221-230.
[41] Bohn, D. and P□ppe, N., 2002, “Assessment of the potential of combined micro gas turbine and high temperature fuel cell systems,” Proc. ASME Turbo Expo 2002.
[42] Nishida, K., Takagi, T., Kinoshita, S. and Tsuji, T., 2002, “Performance evaluation of multi-stage SOFC and gas turbine combined systems,” Proc. ASME Turbo Expo 2002.
[43] Severin, C., Pischinger, S. and Ogrzewalla, J., 2005, “Compact gasoline fuel processor for passenger vehicle APU,” J. Power Sources, Vol. 145 (2), p.p. 675-682
[44] Singhal, S. C., 2002, “Solid oxide fuel cells for stationary, mobile, and military applications,” Solid State Ionics, Vol. 152-153 (), p.p. 405-410.
[45] Riensche, E., Stimming, U. and Unverzagt, G., 1998, “Optimization of a 200 kW SOFC cogeneration power plant part I: variation of process parameter,” J. Power Sources, Vol. 73 (2), p.p. 251-256.
[46] Palazzi, F., Autissier, N., Marechal, F. M. A. and Favrat, D., 2007, “A methodology for thermo-economic modeling and optimization of solid oxide fuel cell,” Applied Thermal Engineering, Vol. 27 (16), p.p. 2703-2712.
[47] Lutsey, N., Brodrick, C. J. and Lipman, T., 2007, “Analysis of potential fuel consumption and emissions reductions from fuel cell auxiliary power units (APUs) in long-haul trucks,” Energy, Vol. 32 (12), p.p. 2428-2438.
[48] Zizelman, J., Botti, J., Tachtler, J. and Strobl, W., 2000, “Solid-oxide fuel cell auxiliary power unit: a paradigm shift in electric supply for transportation,” Convergence 2000-Paper 2000-01-C070, Detroit, 2000.
[49] Zizelman, J., Shaffer, S. and Mukerjee, S., 2002, “Solid oxide fuel cell auxiliary power unit – a development update,” SAE SP-1691, Detroit, March, 2002.
[50] Wunderlich, C. and Boltze, M., “APU Development-How the System Concept Interacts With the Stack Concept,” 2005 Fuel Cell Seminar, Palm Spring, California, USA, November 14-18, 2005.
[51] Lee, S. B., Lim, T. H., Song, R. H, Shin, D. R. and Dong, S. k., 2008, “Development of a 700 W anode-supported micro-tubular SOFC stack for APU applications,” Int. J. Hydrogen Energy, Vol. 33 (9), p.p. 2330-2336.
[52] Wang, Z. W., Berghaus, J. O., Yick, S., Deces-Petit, C., Qu, W., Hui, R., Maric, R. and Ghosh, D., 2008, “Dynamic evaluation of low-temperature metal-supported solid oxide fuel cell oriented to auxiliary power units,” J. Power Sources, Vol. 176 (1), p.p. 90-95.
[53] Chen, Y. and Evans, J. W., 1996, “Cold-down time of solid oxide fuel cells intended for transportation application,” J. Power Sources, Vol. 58 (1), p.p. 87-91.
[54] Apfel, H., Rzepka, M., Tu, H. and Stimmin, U., 2006, “Thermal start-up behaviour and thermal management of SOFC’s,” J. Power Sources, Vol. 154 (2), p.p. 370-378.
[55] Lu, N., Li, Q., Sun, X., and Khaleel, M. A., 2006, “The modeling of a standalone solid-oxide fuel cell auxiliary power unit,” J. Power Sources, Vol. 161 (2), p.p. 938-948.
[56] Pfafferodt, M., Heidebrecht, P., Stelter, M. and Sundmacher, K., 2005, “Model-based prediction of suitable operating range of a SOFC for and auxiliary power unit,” J. Power Sources, Vol. 149 (), p.p. 53-62.
[57] Hong, C. W. and Watson, N., 1988, “Turbocharged S.I. engine simulation under steady and transient conditions,” SAE Int. Congress and Exposition, SAE880122.
[58] Karnopp, C., Margolis, D. L. and Rosenberg, R., 1990, System dynamics: a unified approach 2nd edition, Wiley-Interscience.
[59] Cheng, C. H., Chang, Y. W. and Hong, C. W., 2005, “Multiscale parametric studies on the transport phenomenon of a solid oxide fuel cell,” ASME J. Fuel Cell Science and Technology, Vol.2 (4), p.p. 219-225.
[60] Gut, J. A. W., Fernandes, R., Pinto, J. M. and Tadini, C. C., 2004, “Thermal model validation of plate heat exchangers with generalized configurations,” Chemical Engineering Science, Vol. 59 (21), p.p. 4591-4600.
[61] Slotine, J. -J. E., Hedrick, J. K. and Misawa, E. A., 1987, “On sliding observers for nonlinear systems,” J. Dyn. Syst., Measurement, and Cont., Vol.109 (3), p.p. 245-252.
[62] Misawa, E. A. and Hedrick, J. K., 1989, “Nonlinear observers - A State-of-the-Art survey,” J. Dyn. Syst., Measurement, and Cont., Vol.111 (3), p.p. 344-352.
[63] Chen, G. B., Peng S. S. and Huang, H. P., 1997, “A sliding observer for nonlinear process control,” Chemical Engineering Science, Vol.52 (5), p.p. 787-805.
[64] Choi, J. H., Misawa, E. A. and Toung, G. E., 1999, “A study on sliding mode state estimation,” J. Dyn. Syst., Measurement, and Cont., Vol.121 (2), p.p. 255-260.
[65] Yin, J. and Jensen, M. K., 2003, “Analytical model for transient heat exchanger response,” Int. J. Heat and Mass Transfer, Vol. 46 (17), p.p. 3255-3264.
[66] G□rg□n. H., Arack, M., Varigonda, S. and Bortoff, S. A., 2005, “Observer designs for fuel processing reactors in fuel cell power systems,” Int. J. Hydrogen Energy, Vol. 30 (4), p.p. 447-457.