研究生: |
陳冠豪 Chen, Kuan-Hao |
---|---|
論文名稱: |
視網膜對動態視覺的預測資訊的編碼 Encoding the Predictive Information of Visual Motion in the Retina |
指導教授: |
焦傳金
Chiao, Chuan-Chin 陳志強 Chan, Chi-Keung |
口試委員: |
羅中泉
Lo, Chung-Chuan 黎璧賢 Lai, Pik-Yin |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 85 |
中文關鍵詞: | 視網膜 、預測 、模型 、隨機運動 、互信息 、負回饋 |
外文關鍵詞: | Retina, Prediction, Model, Stochastic motion, Mutual Information, Negative feedback |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了及時反應,動物一定要透過預測來克服神經處理的延遲。過去的 研究已經證明視網膜的細胞能夠預測預測物體移動。為了去了解這樣的特 性,我們給視網膜看隨機移動的物體,並用多電極去量測。物體移動的軌 跡是由一種隨機過程產生,並且會由低通濾波過濾,而產生不同頻率的軌 跡。我們接著計算神經細胞輸出與軌跡的相互資訊。並且我們發現有兩種 細胞—可預測性與不可預測的細胞。可預測性與軌跡頻率也有關係。最後 我們發展一種模型,這個模型包括前饋與反饋的抑制,並且這個抑制是來 自於水平細胞。這種模型可以解釋為什麼視網膜能預測物體移動。
To produce timely responses, animals must conquer delays from visual pro cessing pathway by predicting motion. Previous studies [1] revealed that predic tive information of motion is encoded in spiking activities of retinal ganglion cells (RGCs) early in the visual pathway. In order to study the predictive properties of a retina in a more systematic manner, stimuli in the form of a stochastic moving bar are used in experiments with retinas from bull frogs in a multielectrode sys tem. We then investigated the predictive properties of single RGC by calculating the time shifted (δt) mutual information (MI(x,r;δt)) between spiking output (r(t)) from a single RGC and the bar trajectories (x(t)). Two kinds of cells are charac terized: predictive RGCs and nonpredictive RGCs. In order to further understand the mechanism of prediction, we develop a negative group delay model which is based on Voss's [2] paper to generate anticipatory responses. We extend our model to spatial version and use the same stimulation condition as we use in experiments. The model indicates that delayed negative feedback is crucial for producing antic ipation dynamics. Besides, we also show feedforward inhibition can also generate similar prediction dynamics. Besides, our feedback and feedforward model can also predict constant velocity moving bar [3]. After adding LPOU noises into con stant velocity moving bar, our model even predicts better than Berry gain control model [3] which explains anticipation of constant velocity moving bar. To sum up, our feedback and feedforward model can anticipate both stochastic and constant velocity moving bar with and without noises.
[1] S. E. Palmer, O. Marre, M. J. Berry, and W. Bialek, “Predictive information in a sensory population,” Proceedings of the National Academy of Sciences, vol. 112, no. 22, pp. 6908– 6913, 2015.
[2] H. U. Voss, “Signal prediction by anticipatory relaxation dynamics,” Phys. Rev. E, vol. 93, p. 030201, Mar 2016.
[3] M. J. Berry, I. H. Brivanlou, T. A. Jordan, and M. Meister, “Anticipation of moving stimuli by the retina,” Nature, vol. 398, no. 6725, pp. 334–338, 1999.
[4] R. H. Kramer and C. M. Davenport, “Lateral inhibition in the vertebrate retina: The case of the missing neurotransmitter,” PLOS Biology, vol. 13, pp. 1–8, 12 2015.
[5] H. M. Schreyer, Nonlinearities in bipolar cells and their role for encoding visual signals. PhD thesis, GeorgAugust University School of Science, 5 2018.
[6] J. fan Chein, “Encoding the light intensity in retina’s firing rate,” Master’s thesis, National Taiwan University, 7 2017.
[7] N. K. Kuhn and T. Gollisch, “Joint encoding of object motion and motion direction in the salamander retina,” J Neurosci, vol. 36, no. 48, pp. 12203–12216, 2016.
[8] D. W. Crevier and M. Meister, “Synchronous perioddoubling in flicker vision of salaman der and man,” Journal of Neurophysiology, vol. 79, no. 4, pp. 1869–1878, 1998. PMID: 9535954.
[9] M. D. Menz, D. Lee, and S. A. Baccus, “Representations of the amacrine cell population underlying retinal motion anticipation,” bioRxiv, 2020.
[10] C. Behrens, Y. Zhang, S. C. Yadav, S. Haverkamp, S. Irsen, M. M. Korympidou,
A. Schaedler, K. Dedek, R. G. Smith, T. Euler, P. Berens, and T. Schubert, “Retinal hori zontal cells use different synaptic sites for global feedforward and local feedback signal ing,” bioRxiv, 2019.
[11] S. A. Baccus, B. P. Olveczky, M. Manu, and M. Meister, “A retinal circuit that computes object motion,” J Neurosci, vol. 28, no. 27, pp. 6807–17, 2008.
[12] M. B. Manookin, S. S. Patterson, and C. M. Linehan, “Neural mechanisms mediating motion sensitivity in parasol ganglion cells of the primate retina,” Neuron, vol. 97, no. 6, pp. 1327–1340 e4, 2018.
[13] T. Euler, P. B. Detwiler, and W. Denk, “Directionally selective calcium signals in dendrites of starburst amacrine cells,” Nature, vol. 418, no. 6900, pp. 845–852, 2002.
[14] H. B. Barlow, “Summation and inhibition in the frog’s retina,” The Journal of Physiology, vol. 119, no. 1, pp. 69–88, 1953.
[15] S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” Journal of Neurophysiology, vol. 16, no. 1, pp. 37–68, 1953. PMID: 13035466.
[16] B. G. Borghuis and A. Leonardo, “The role of motion extrapolation in amphibian prey capture,” Journal of Neuroscience, vol. 35, no. 46, pp. 15430–15441, 2015.
[17] J. Johnston and L. Lagnado, “General features of the retinal connectome determine the computation of motion anticipation,” Elife, vol. 4, 2015.
[18] H. Ishikane, M. Gangi, S. Honda, and M. Tachibana, “Synchronized retinal oscillations encode essential information for escape behavior in frogs,” Nat Neurosci, vol. 8, no. 8, pp. 1087–95, 2005.
[19] N. K. Kuhn and T. Gollisch, “Activity correlations between directionselective retinal gan glion cells synergistically enhance motion decoding from complex visual scenes,” Neuron, vol. 101, no. 5, pp. 963–976 e7, 2019.
[20] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,” Phys. Rev., vol. 36, pp. 823–841, Sep 1930.
[21] E. Chichilnisky, “A simple white noise analysis of neuronal light responses,” Network (Bristol, England), vol. 12, p. 199—213, May 2001.
[22] J. Wolfe and L. A. Palmer, “Temporal diversity in the lateral geniculate nucleus of cat,” Visual Neuroscience, vol. 15, no. 4, p. 653–675, 1998.
[23] C. E. Shannon, “A mathematical theory of communication,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 5, p. 3–55, Jan. 2001.
[24] K. S. Chen, C.C. Chen, and C. K. Chan, “Characterization of predictive behavior of a retina by mutual information,” Frontiers in Computational Neuroscience, vol. 11, p. 66, 2017.
[25] J. M. Salisbury and S. E. Palmer, “Optimal prediction in the retina and natural motion statistics,” Journal of Statistical Physics, vol. 162, no. 5, pp. 1309–1323, 2016.
[26] W. Bialek, I. Nemenman, and N. Tishby, “Predictability, complexity, and learning,” Neural Comput, vol. 13, no. 11, pp. 2409–63, 2001.
[27] C. Tresser, “Period doubling,” Scholarpedia, vol. 9, no. 11, 2014.
[28] P.Y. Chou, J.F. Chien, K. S. Chen, Y.T. Huang, C.C. Chen, and C. K. Chan, “Antic ipation and negative group delay in a retina,” Phys. Rev. E, vol. 103, p. L020401, Feb 2021.