簡易檢索 / 詳目顯示

研究生: 張凱翔
Chang, Kai-Hsaing
論文名稱: Inconel 625鎳基超合金於不同溶氧量超臨界水環境下之腐蝕行為研究
Effect of dissolved oxygen concentration on the oxide structure of Inconel 625 Ni-based superalloy in supercritical water environment
指導教授: 開執中
Kai, Ji-Jung
口試委員: 葉宗洸
Yeh, Tsung-Kuang
開物
Kai, Wu
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 102
中文關鍵詞: 超臨界水鎳基超合金腐蝕氧化溶氧量
外文關鍵詞: supercritical water, Ni-based superalloy, corrosion, oxidation, dissloved oxygen concentration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超臨界水核反應器(Supercritical Water-Cooled Reactor, SCWR)為第四代核反應器設計之一,其運轉溫度和壓力高於水的臨界點(374℃、22.1MPa),具有比輕水式反應器更高的熱轉換效率。超臨界水反應器之設計不但簡化爐心的複雜度且縮小反應槽體積,因而更能有效提升安全性且降低建廠成本。然而,超臨界水具有可無限溶解無極性氣體的特性、高運轉溫度以及高功率密度加劇了輻射水解的效應,使爐心水化學環境之腐蝕性比輕水式反應器來的更加嚴重。因此,發展可適用於超臨界水反應器中高溫、高腐蝕性和高應力爐心環境中的金屬材料,即顯得相當重要。
    本論文中,將Inconel 625 鎳基超合金置於模擬超臨界水環境迴路中進行測試,在實驗溫度為700℃、壓力為24.8MPa 和溶氧量分別為150ppb、1ppm 和8.3ppm 的環境下,量測腐蝕後質量之改變,並透過電子顯微鏡技術探討其腐蝕機制。在8.3ppm 溶氧量環境下,腐蝕時間(t)在70 至600 小時間,質量增加(w)遵守w^2.095 = 2.60 × 10^-5t趨勢,符合拋物線律。從橫截面的分析上發現氧化層呈現雙層的結構:外層為spinel Ni(Cr, Fe)2O4,內層由緻密的Cr2O3 組成。而在不同溶氧量環境下,在150ppb 時其外層spinel 厚度明顯較8.3ppm 來的薄,而內層Cr2O3 之厚度大致相同,代表於低溶氧環境下,Inconel 625 表面以氧化鉻為主,高溶氧則以含鎳氧化物spinel 為主。Inconel 625 在700℃下於母材中生成大量γ”強化析出相,而在1000 小時後γ”相密度大幅下降取而代之的是δ 相。


    Supercritical Water-Cooled Reactor (SCWR) is one of the Generation-IV nuclear reactor designs which operates above the thermodynamic critical point of the water (374℃ and 22.1MPa), and exhibits a higher thermal efficiency and a simpler system configuration with respect to a conventional light water reactor (LWR). However, the water radiolysis effect in the core of SCWR is much severer than that in LWR because the supercritical water could dissolve the non-polar gas, such as oxygen, without the solubility limit, much higher temperatures and higher power density. This phenomenon makes the environment in SCWR much corrosive so that evaluating the feasibility of materials is a significant issue for developing SCWR.
    Ni-based superalloy Inconel 625 was exposed in supercritical water environment with 150 ppb, 1 ppm and 8.3 ppm dissolved oxygen [DO] at 700℃ and 24.8MPa for various periods of time up to 1000h. Before 600h, the mass gains (w) in the samples
    as a function of test duration (t) could be fitted by an equation of w^2.095 = 2.60 × 10^-5t approximately followed the parabolic law. In addition, oxides with a double-layer structure were observed. The outer layer of the scales was constructed by spinels Ni(Cr, Fe)2O4 and the compact inner layer was Cr2O3. Nevertheless, the thickness of outer layer in 150ppb low [DO] was smaller than in 8.3ppm high [DO] environment but the thickness of inner layer was in the same order, indicating that the Ni-containing oxides, such as NiO and Ni(Cr, Fe)2O4 were stable in high [DO] and Cr-containing oxides were favorable in low [DO]. After oxidation, large amount of γ” precipitates were formed in the matrix of Inconel 625 alloy. Extending the exposure time to 1000 h, the density of γ” precipitates decreased and the γ” phase was replaced by the δ phase precipitate.

    第一章 前言與研究動機 第二章 文獻回顧 2.1 超臨界水核反應器之發展進程 2.2 超臨界水之特性 2.3 金屬材料於超臨界水環境之腐蝕行為 2.3.1 肥粒麻田鐵 2.3.2 氧化物散佈強化鐵 2.3.3 奧斯田體不鏽鋼 2.3.4 可形成氧化鋁層不銹鋼 2.3.5 鎳基超合金 2.4 鎳基超合金的發展與應用 2.4.1 鎳基超合金的強化機制 2.4.2 Inconel 625鎳基超合金的發展與應用 第三章 實驗原理與方法 3.1 腐蝕實驗 3.1.1 金屬試片腐蝕前處理 3.1.2 超臨界水循環系統 3.2 實驗分析 3.2.1 電子顯微鏡原理 3.2.2 電子束與物質交互作用 3.2.3 X光能量分散光譜儀 3.2.4 X光繞射分析儀 第四章 結果與討論 4.1 腐蝕動力學 4.2 表面分析 4.3 氧化層分析 4.3.1 TEM橫截面分析 4.3.2 XRD廣角繞射分析 4.4 腐蝕機制 4.4.1 溫度 4.4.2 超臨界水中溶氧量 4.5 析出相之微結構分析 第五章 結論 第六章 未來研究方向

    [1] 台灣電力股份有限公司,97 年各類發電單位成本列表(燃料別)
    [2] 經濟部99~108 年長期負載預測與電源開發規劃摘要報告,經濟部能源局100 年 1 月
    [3] D. Guzonas, “SCWR MATERIAL AND CHEMISTRY STATUS OF ONGOING RESEARCH,” GIF Symposium, Paris, France, 9-10 September, 2009.
    [4] Supercritical Water Reactor (SCWR) Survey of Materials Experience and R&D Needs to Assess Viability, INEEL/EXT-03-00693 Revision 1, September 2003.
    [5] T.K. Yeh , M.Y. Wang , H.M. Liu and M. Lee, “MODELING COOLANT CHEMISTRY IN A SUPERCRITICAL WATER REACTOR,” 2012 TopSafe Conference, Helsinki, Finland, April 22-26, 2012.
    [6] Generation IV International Forum, “GIF R&D Outlook for Generation IV Nuclear Energy Systems,” 21 August 2009.
    [7] H. Khartabil, “SCWR: Overview,” GIF Symposium, Paris, France, 9-10 September, 2009.
    [8] “A Technology Roadmap for Generation IV Nuclear Energy Systems,” U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002.
    [9] “Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production,” INEEL/EXT-03-01277, September 2003.
    [10] G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, “Corrosion and stress corrosion cracking in supercritical water,” Journal of Nuclear Materials 371(2007)
    176–201.
    [11] P. Kritzer, "Corrosion in high-temperature and supercritical water and aqueous solutions: influence of solution and material parameters,” SCR-2000, 6–8 November, 2000, Tokyo.
    [12] K. Johnston, C. Haynes, Am. Inst. Chem. Eng. J. 33, (1987) 2007.
    [13] W.G. Cook, R.P. Olive, “Pourbaix diagrams for the iron–water system extended to high-subcritical and low-supercritical conditions,” Corrosion Science 55 (2012) 326–331.
    [14] W.G. Cook and R.P. Olive, “Pourbaix diagrams for the nickel-water system extended to high-subcritical and low-supercritical conditions,” Corrosion Science 58 (2012) 284–290.
    [15] W.G. Cook, R.P. Olive, “Pourbaix diagrams for chromium, aluminum and titanium extended to high-subcritical and low-supercritical conditions,” Corrosion Science 58 (2012) 291–298.
    [16] S. Kashahara, J. Kuniya, K. Moriya, N. Saito, and S. Shiga, GENES4/ANP2003, Kyoto, Japan. Paper 1132, September (2003).
    [17] J. Jang, et al., “Corrosion Behavior of 9Cr F/M Steels in Supercritical Water,” Proc. ICAPP’05, Seoul, Korea, Paper 5136, May, 2005.
    [18] J. Kaneda et al., “Corrosion Film Properties of the Candidate Materials for the Fuel Claddings of the SupercriticalWater Cooled Power Reactor,” Proc. ICAPP’05, Seoul, Korea, Paper 5594, May, 2005.
    [19] P. Ampornrat, G.S. Was, ”Oxidation of ferritic–martensitic alloys T91, HCM12A and HT-9 in supercritical water”, Journal of Nuclear Materials 371 (2007) 1–17.
    [20] N.Q. Zhang, H. Xu, B.R. Li, Y. Bai and D.Y. Liu, “Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water,” Corrosion Science 56 (2012) 123-128.
    [21] H.S. Cho, A. Kimura, S. Ukai and M. Fujiwara, “Corrosion properties of oxide dispersion strengthened steels in super-critical water environment,” Journal of
    Nuclear Materials 329–333 (2004) 387–391.
    [22] H.S. Cho and A. Kimura, “Corrosion resistance of high-Cr oxide dispersion strengthened ferritic steels in super-critical pressurized water,” Journal of Nuclear Materials 367–370 (2007) 1180–1184.
    [23] A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J.H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and T.F. Abe, “Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems,” Journal of Nuclear Materials 417 (2011) 176–179.
    [24] J. Isselin, R. Kasada and A. Kimura, “Corrosion behaviour of 16%Cr–4%Al and 16%Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment, ” Corrosion Science 52 (2010) 3266–3270.
    [25] J.H. Lee, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa and F. Abe, “Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels,” Journal of Nuclear Materials 417 (2011) 1225–1228.
    [26] G.S. Was, S. Teysseyre and Z. Jiao, “Corrosion of Austenitic Alloys in Supercritical Water”, Corrosion, Vol. 62, No. 11 (2006) 989-1005.
    [27] X. Gao, X.Q. Wu, Z. Zhang, H. Guan and E.H. Han, “Characterization of oxide films grown on 316L stainless steel exposed to H2O2-containing supercritical water,” Journal of Supercritical Fluids 42 (2007) 157-163.
    [28] M.C. Sun, X.Q. Wu, Z. Zhang and E.H. Han, “Oxidation of 316 stainless steel in supercritical water,” Corrosion Science 51 (2009) 1069-1072.
    [29] M.P. Brady, Y. Yamamoto, M.L. Santella, P.J. Maziasz, B.A. Pint, C.T. Liu, Z.P. Lu, and H. Bei, “The Development of Alumina-Forming Austenitic stainless steels for high-temperature structural Use,” JOM, July 2008.
    [30] Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer and E.A. Payzant, “Creep-Resistant, Al2O3-Forming Austenitic Stainless Steel,” Science, vol. 316, 20 April 2007.
    [31] X.Q. Xu, X.F. Zhang, G.L. Chen and Z.P. Lu, “Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels,” Materials Letters 65 (2011) 3285–3288.
    [32] S.H. Nie, Y. Chen, X. Ren, K. Sridharan and T.R. Allen, “Corrosion of alumina-forming austenitic steel Fe–20Ni–14Cr–3Al–0.6Nb–0.1Ti in supercritical water,” Journal of Nuclear Materials 399 (2010) 231–235.
    [33] “Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production,” INEEL/EXT-04-02530, January 2005.
    [34] P. Xu, L.Y. Zhao, K. Sridharan and T.R. Allen, “Oxidation Behavior of Grain Boundary Engineered Alloy 690 in Supercritical Water Environment," Journal of Nuclear Materials 422 (2012) 143–151.
    [35] L. Tan, X. Ren, K. Sridharan and T.R. Allen, “Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants,” Corrosion Science 50 (2008) 3056–3062.
    [36] 黃日鉉,「Inconel 625 超合金於超臨界水環境下之腐蝕行為研究」國立清華大學核子工程與科學研究所,碩士論文,中華民國九十七年
    [37] 顏存濱,「Inconel 625 超合金於超臨界水環境下氧化層結構變化之研究」國立清華大學工程與系統科學研究所,碩士論文,中華民國九十九年
    [38] M.C. Sun, X.Q. Wu, Z. Zhang, E.H. Han, “Analyses of oxide films grown on Alloy 625 in oxidizing supercritical water,” The Journal of Supercritical Fluids 47 (2008) 309-317.
    [39] C.T. Sims and W.C. Hagel, The Superalloys, John Wiley & Sons, New York, 1972.
    [40] N.F. Mott and F.R.N. Nabarro, Report of the Conference on Strength of Solids, Physical Society, (1948)1-19.
    [41] R.M.N. Pelloux and N.J. Grant, Trans. Met. Soc. AIME, 218 (1960) 232-237.
    [42] R.L. Fleischer, Acta Met., 11 (1963) 203-209.
    [43] R.G. Davies and N.S. Stoloff, Trans. Met. Soc. AIME, 233 (1965) 714-719.
    [44] N.S. Stoloff and R.G. Davies, Prog. Mat. Sci., 13, No. 1 (1966) 3-84.
    [45] G.R. Leverant, M.Gell, and S.W. Hopkins, Proc. Second Int. Conf. Strength Met. Alloys, 3 (1970) 1141-1144.
    [46] F.F. Barder, Discussion of : Eiselstein, H.L., in Advances in the Technology of Stainless Steels and Related Alloys, STP 369, ASTM, Philadelphia, Pa., (1965) 78-79.
    [47] H.J. Wagner and A.M. Hall, “Physical Metallurgy of Alloy 718,” DMIC Report 217, Battelle Memorial Institute, Columbus, Ohio, (June 1, 1965).
    [48] J.F. Bader, Metal Progress, 81 (May, 1962) 72-76.
    [49] R.F. Decker, and J.R. Mihalisin, Trans. ASM, 62 (1969) 481-489.
    [50] D.F. Paulonis, F.M. Oblak, and D.S. Duvall, Trans. ASM, 62 (1969) 611-622.
    [51] I. Kirman and D.H. Warrington, Met. Trans., 1 (1970) 2667-2675
    [52] E.A. Loria. “Superalloys 718, 625, 706 and Various Derivatives sponsored by the Minerals,” Metals & Materials Society and cosponsored by ASM International and National Association of Corrosion Engineers, June 26-29, 1994.
    [53] V. Shankar, “Microstructure and mechanical properties of Inconel 625 superalloy,” Journal of Nuclear Materials 288 (2001) 222–232.
    [54] J. Mittra, “Acoustic emission technique used for detecting early stages of precipitation during aging of Inconel 625,” Scripta Materialia 49, (2003) 1209–1214.
    [55] 科儀叢書3,材料電子顯微鏡學,國科會精儀中心
    [56] 汪建民、杜正恭,材料分析,中國材料科學學會(1998).
    [57] H. M. Tawancy, Practical engineering failure analysis, New York : Marcel Dekker , (2004) 381.
    [58] M.J. Graham and R.J. Hussey, Transport in growing oxide films, in: M.A. Dayananda, S.J. Rothman,and W.E. King (Eds.), Oxidation of Metals and Associated Mass Transport, The Metallurgical Society, Inc., Warrendale, PA, 1987, p. 85.
    [59] X. Ren, K. Sridharan and T.R. Allen, “Corrosion behavior of alloys 625 and 718 in supercritical water,” Corrosion 63 (2007) 603–612.
    [60] N. Birks, G.H. Meier and F.S. Pettit, Introduction to high temperature oxidation of metals, London, E. Arnold, 2005.
    [61] Anwar Ul- Hamid, “A TEM study of the oxide scale development in Ni-Cr alloys,” Anti- Corrosion Methods and Materials, vol. 51, No.3, 2004, pp. 216-222.
    [62] K.I. Hirano, R.P. Agarwala, B.L. Averbach and M. Cohen, “Diffusion in Cobalt-Nickel Alloys,” Journal of Applied Physics, vol. 33, No. 10 October 1962.
    [63] C. C. Lin, Radiochemistry in Nuclear Power Reactors, National Academy Press, Washington D. C., USA, 1996.
    [64] N.D. Evans, P.J. Maziasz, J.P. Shingledecker, Y. Yamamoto, “Microstructure evolution of alloy 625 foil and sheet during creep at 750 °C,” Materials Science and Engineering: A 498 (2008) 412–420.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE