簡易檢索 / 詳目顯示

研究生: 林保安
Pao-An Lin
論文名稱: 改良式同質性YBCO雙磊晶晶界結成長在YSZ上及第一原理計算BaZrO3薄膜在ZrO2上
Improved homo-bi-epitaxial grainboundary junction process of YBCO on YSZ and ab-initio calculations of BaZrO3 films on ZrO2
指導教授: 齊正中
Cheng-Chung Chi
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 101
中文關鍵詞: 高溫超導雙磊晶晶界結同質性雙磊晶晶界結電流密度RSJ模型界面的faceting第一計算原理BaZrO3成長在YSZ上
外文關鍵詞: High temperature superconducting bi-epitaxial grainboundary junctions, HTS homo-bi-epitaxial grainboundary junctions, critical current densities, RSJ model, faceting, zigzag boundary line, ab-initio calculations, BaZrO3 / YSZ stacking
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 製作高溫超導雙磊晶晶界結是我們實驗室一直努力的方向。本論文的第一部分主要是發展穩定的同質性雙磊晶晶界結,研究YBCO薄膜在各種不同鍍膜條件下的成長在YSZ上,並找出改進零度及四十五度薄膜的成長穩定性。除了成長零度與四十五度的薄膜,我們也成長了很多混合零度及四十五度的薄膜。其中薄膜的電流密度跟溫度的相依性、磁場的相依性及不同混合角度的相依性被詳細的探討。在溫度5k下,純零度或四十五度薄膜的電流密度大約是107 A/cm2。然而,在混合的角度下,所產生的薄膜,其電流密度卻相對的比純零度或四十五度小三個數量級。另一方面,溫度的相依性,在純零度與四十五度薄膜上,也表現兩者的相異性。因為前面穩定的製程,我們製作了可重現的同質性雙磊晶晶界結。我們也對非對稱的四十五度晶界結做量測及分析。從電流及電壓的關係中,有一點偏離 RSJ模型,會有如此的偏離,可能是來自於界面的faceting。因此,我們最近一直努力嚐試用E-beam 畫zigzag,以其改良其邊界,這工作也正在進行中。
    本論文的另一部分是從理論上,討論BaZrO3如何成長在YSZ上。我們利用第一計算原理去計算各種不同的堆疊模型。很有趣的是我們發現零度旋轉的模型,BaZrO3整體體積有很大的膨脹。而四十五度旋轉的模型,BaZrO3整體的體積卻沒改變多少。 經過運動到比較穩定的結構,我們也發現零度模型相對於四十五度模型動的很少。這有可以是零度本來就是比較穩定的成長。有於計算相當複雜,我們並沒有計算真正的堆疊YBCO/BaZrO3/YSZ,這也是我們未來的工作。


    High temperature superconducting bi-epitaxial grainboundary junctions have been fabricated in our laboratory. The first part of this thesis is to develop the techniques for making HTS homo-bi-epitaxial grainboundary junctions. We have studied the in-plane orientations of epitaxial growth of YBCO on YSZ substrates under different deposition conditions and found improved processes for growing 0-degree and 45-degree films. In addition to the two kinds of homogeneous films, we can also produce films of mixed orientations with different ratio. The critical current densities of films with different in-plane orientations, pure and mixed, are measured as a function of temperature and applied perpendicular magnetic fields. The critical current densities of films with both pure orientations are in the order of 107 A/cm2 at 5K, while those of the mixed orientations are at least three orders of magnitude smaller. In addition, the temperature dependences of critical current are quite different for these two groups of films. Aided with the knowledge of producing films of pure orientations, we have successfully fabricated reproducible bi-epitaxial grainboundary junctions. The critical current densities of asymmetric 45-degree grainboundary junctions are measured and analyzed. The I-V curves show substantial deviations from that of RSJ model with a current density of the same order of those of mixed films. The reason for deviation from RSJ model is probably due to the existence of facets along the grain boundary. Work is under progress to control faceting by producing zigzag boundary line with e-beam lithography.
    The second part of this thesis is a theoretical study of epitaxial growth of BaZrO3 on YSZ, which is believed to be the main reason for producing YBCO films with 0-degree orientation. We have used the ab-initio calculations to calculate the total energies of several different models of BaZrO3 / YSZ stacking. It is interesting to note that there is a volume expansion of 0-degree BZO in contrast to nearly no volume change for the 45-degree BZO on YSZ. After the atoms are relaxed, the atomic movements of the latter are much greater than the former. We believe that is the reason for favoring 0-degree orientation. However, due to the complexity of the real stack YBCO/BaZrO3/YSZ, we defer such more demanding calculations to future work.

    ABSTRACT IN CHINESE Ⅰ ABSTRACT IN ENGLISH Ⅲ ACKNOWLEDGEMENT Ⅴ LIST OF TABLES Ⅹ LIST OF FIGURES XI Part A IMPROVED HOMO-BI-EPITAXIAL GRAINBOUNDARY JUNCTION PROCESS OF YBCO ON YSZ 1 CHAPTER 1 INTRODUCTION 2 1.1 Overview of Grain boundaries 2 1.2 Review of high Tc grain-boundary josephson junctions 3 1.3 The purpose of this part 5 CHAPTER 2 YB2C3O7-δ FILMS WITH CONTROLLABLE IN-PLANE ORIENTATIONS GROWN ON YTTRIA-STABILIZED ZIRCONIA SUBSTRATES 7 2.1 Introduction 7 2.2 Experimental procedure and results 7 2.2.1 Surface morphologies of virgin substrates and ion-bombarded 7 2.2.2 Preparation of films 9 2.2.3 Transport property of the YBCO films 19 2.3. Discussion 23 CHAPTER 3 CRITICAL CURRENT of YB2C3O7-δ FILMS AND FOURTY FIVE DEGREE HOMO-BI-EPITAXIAL GRAINBOUNDARY JUNCTIONS 24 3.1 Introduction 24 3.2 Structure Properties of 0-degree and 45-degree in-plane orientations YBCO films 26 3.2.1 X-ray characterization of the 0-degree and 45-degree in-plane orientations of the YBCO films 26 3.2.2 Surface properties of 0-degree and 45-degree in-plane orientations of the YBCO films 27 3.3 critical current density property of 0-degree and 45-degree in-plane orientations of the YBCO films 29 3.3.1 Determination of Tc 30 3.3.2 Temperature dependence 30 3.3.3 Magnetic field dependence 31 3.4 Critical current with different mixed orientations at 5K 33 3.5 45o bi-epitaxial grain boundary junction 34 3.5.1 Junctions Fabrications 35 3.5.2 Structural properties and R-T curve of Junctions 37 3.5.3 current-voltage curves 41 3.6 Discussions 43 3.6.1 Temperature dependence of 0-degree and 45-degree in-plane orientations of the YBCO films 43 3.6.2 Magnetic field dependence of 0-degree and 45-degree in-plane orientations of the YBCO films 43 3.6.3 Current density dependence of mixed orientations-YBCO films 44 3.6.4 Critical current of 45-degree bi-epitaxial grain boundary junction 44 CHAPTER4 CONCLUSIONS AND FUTURE WORK 46 Part B AB-INITIO CALCULATIONS OF BaZrO3 FILMS ON ZrO2 48 CHAPTER 1 INTRODUCTION 49 1.1 Review of YBCO grown on YSZ 49 1.2 The purpose of this part 51 CHAPTER 2 DENSITY FUNCTIONAL THEORY 52 2.1 Hartree approximation 52 2.2 Hartree-Fock approximation 53 2.3. Density Functional Theory 53 CHAPTER 3 AB-INITIO STUDY OF BaZrO3 GROWN ON ZrO2 56 3.1 Introduction 56 3.2 Simulation method 56 3.3 Calculations with experiment of bulk BaZrO3 and YSZ 57 3.3.1 Density of state and band structure of ZrO2 57 3.3.2 Density of state and band structure of BaZrO3 59 3.4 The energy variation of BaZrO3 and ZrO2 by relaxing the structure 60 3.4.1 Relaxed structure of ZrO2 by compressing 60 3.4.2 Relaxed structure of BaZrO3 61 3.4.3 The energy variant comparison of BaZrO3 and ZrO2 62 3.5 Models development 63 3.5.1 Model A for 45-degree orientation 63 3.5.2 Model B for 45-degree orientation 65 3.5.3 Model A for 0-degree orientation 68 3.5.4 Model B for 0-degree orientation 70 3.6 Discussions 72 CHAPTER4 CONCLUSIONS AND FUTURE WORK 73 LIST OF REFERENCES 74 APPENDIES 81 Appendix A 81 Appendix B 86

    REFERENCE

    Part A
    Chapter1
    1. J.G. Bednorz and K.A. Muller, ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER 64, 189 (1986).
    2. M.K. Wu, J.R. Ashburn, C.T. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu, Phys. Rev. Lett. 58, 908 (1987).
    3. H. Hilgenkamp, J. Mannhart ,Rev of Mod Phys, 74, 485(2002).
    4. Ekin, J. W., A. I. Braginski, A. J. Panson, M. A. Janocko, D.W. Capone II, N. J. Zaluzec, B. Flandermeyer, O. F. de Lima,M. Hong, J. Kwo, and S. H. Liou , J. Appl. Phys. 62,4821(1987).
    5. J. Mannhart, J., and P. Chaudhari, Phys. Today 54, 48(2001).
    6. Daly, K. P., W. D. Dozier, J. F. Burch, S. B. Coons, R. Hu, C. E.Platt, and R. W. Simon, 1991, Appl. Phys. Lett. 58, 543–545(1991).
    7. Chaudhari, P., and S. Y. Lin, Phys. Rev. Lett. 72, 1084–1087(1994).
    8. Kirtley, J. R., C. C. Tsuei, J. Z. Sun, C. C. Chi, L. S. Yu-Jahnes, A. Gupta, M. Rupp, and M. B. Ketchen, Nature (London) 373, 225–228. (1995)
    9. Neils, W. K., and D. J. Van Harlingen,Phys. Rev. Lett. 88,047001(2002).
    10. Walker, M. B., Phys. Rev. B 62, 11 854–11 858(2000).
    11. R. H. Koch, C. P. Umbach, G. J. Clark, P. Chaudhari, and R. B. Laibowitz, Appl. Phys. Lett. 51, 200(1987).
    12. P. Chaudhari, J. Mannhart, D. Dimos, C. C. Tsuei, J. Chi, M. M. Oprysko, M. Scheuermann, Phys. Rev. Lett. 60, 1653(1988).
    13. D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, Phys. Rev. Lett.61, 219 (1988).
    14. K. Char, M. S. Colclough, S. M. Garrison, N. Newman, and G. Zaharchuk Appl. Phys. Lett. 59 (6), (1991).
    15. K. Char, M. S. Colclough, L. P. Lee, and G. Zaharchuk, Appl. Phys. Lett. 59 (17) (1991).
    16. Wu, X. D., L. Luo, R. E. Muenchausen, K. N. Springer, and S.Foltyn, ,Appl. Phys. Lett. 60, 1381–1383. (1992).
    17. Takami, T., K. Kuroda, K. Kojima, M. Kataoka, J. Tanimura, O. Wada, and T. Ogama, Jpn. J. Appl Phys., Part 2 32, L583–L585(1993).
    18. Youm, D., and J. H. Kim, Physica C 251, 399–404.(1995).
    19. Di Chiara, A., F. Lombardi, F. M. Granozio, U. S. di Uccio, F.Tafuri, and M. Valentino, IEEE Trans.Appl. Supercond. 7, 3327–3330. (1997).
    20. Tafuri, F., F. Miletto Granozio, F. Carillo, A. Di Chiara, K.Verbist, and G. Van Tendeloo, Phys. Rev. B 59,11 523–11 531.( 1999).
    21. 蔡淑惠,清華大學物理研究所, 博士論文 (1999).
    22. 李可欣,清華大學物理研究所, 碩士論文(2002)
    Chapter 2
    1. N. G. Chew, S. W. Goodyear, R. G. Humphreys, J. S. Satchel, J. A. Edwards, and M. N. Keene, Appl. Phys. Lett. 60 ,1516, (1992).
    2. D. M. Hwang, T. S. Ravi, R. Ramesh, Siu-Wai Chan, C. Y. Chen, and L. Nazar ,X. D. Wu, A.Inam,and T. Venkatesan , Appl. Phys. Lett. 57, 1690, (1990).
    3. H. Hilgenkamp, J. Mannhart ,Rev of Mod Phys, 74, 485, (2002).
    4. S. M. Garrison, N. Newman, 5. F. Cole, K. Char, and R. W. Barton, Appl. Phys. Lett. 58 (19),2168, (1991).
    5. J. A. Alarco, G. Brorsson, H. Olin, and E. Olsson J. Appl. Phys.75 ,3202, (1994).
    6. J. A. Alarco, G. Brorsson, Z, G. Ivanov, P.-k Nilsson, and E.Olsson Appl. Phys. Leti. 61 , 723, (1992).
    7. L.A. Tietz, C.B. Carter, D.K. Lathrop, S.E. Russek, R. A. Buhrman,and J. R. Michael, J. Mater. Res.4, 1072, (1989).
    8. J. Mannhart, J., and P. Chaudhari, Phys. Today 54, 48(2001)
    9. J. Mannhart, J., and P. Chaudhari, Phys. Today 54, 48(2001)
    10. Y. Li, et. al, Physica C 235, 589, (1994).
    11. S.H. Tsai, , M.K.Wu, C.C. Chi Chinese J. Phys. 36, 355, (1998).
    12. S.H. Tsai, C.C. Chi , M.K.Wu, Physica C 339, 155, (2000).
    13. Thesis of Ko-Hsin Lee, (2002).
    14. E.M. Gyorgy, R.B. van Dover, K.A. Jackson, L.F. Schneemeyer, J.V. Waszczak, Appl. Phys. Lett. 55 283, (1989).
    15. E. H. Brandt, M. Indenbom, Phys. Rev. B, 48 12893, (1993).
    16. E. Zeldov, J. R. Clem, M. McElfresh, M. Darwin, Phys. Rev. B, 49 9802, (1994).

    Chapter3

    1. G. Blatter, M. V. Feigelman, V. G. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)
    2. A. Gurevich E. A. Pashitskii Phys. Rev. B. 57, 13878(1998)
    3. B. Dam, J. M. Huljbregtse, F. C. Klaassen, R. C. F. van der Geest, G. Doornbos, J. H. Rector, A. M. Testa, S. Freisem, J. C. Martý´nez, B. Stauble-Pumpin, and R. Griessen, Nature 399 ,439(1999) .
    4. F.C.Klaassen, et.al., Phys. Rev. B. 64, 184523 (2001).
    5. B.Dam, et.al., Phys. Rev .B. 65, 064528 (2002).
    6. V.Pan, et.al., Phys. Rev. B. 73, 054508 (2006).
    7. P. De Genn, Rev. Mod. Phys. 36, 225 (1964)
    8. K. A. Delin and A. W. Kleinsasser, Supercond. Sci. Technol. 9, 227(1996)
    9. Yu. V. Fedotov,* S. M. Ryabchenko, and A. P. Shakhov Low Temp. Phys. 26 ,p464(2000)
    10. E´ . A. Pashitski†,* V. I. Vakaryuk, S. M. Ryabchenko, and Yu. V. Fedotov J. Low Temp. Phys. 27, 96(2001)
    11. Yu. V. Fedotov, S. M. Ryabchenko, E´ . A. Pashitski†, A. V. Semenov,* and V. I Vakaryuk V. M. Pan and V. S. Flis , J. Low Temp. Phys. 28, 172(2002)
    12. F.C.Klaassen, et.al., Phys. Rev. B. 64, 184523 (2001).
    13. B.Dam, et.al., Phys. Rev. B. 65, 064528 (2002).
    14. P.A.Lin, R. L. Lo, C. C. Chi J. Appl. Phys. 99, p083506 (2006).
    15. J. A. Alarco, G. Brorsson, Z, G. Ivanov, P.-k Nilsson, and E.Olsson Appl. Phys. Letter 61 , 723 (1992)
    16. H. Hilgenkamp, J. Mannhart ,Rev of Mod Phys, 74, 485(2002)
    17. Y. Li, et. al, Physica C 235, 589(1994)
    18. S.H. Tsai, , M.K.Wu, C.C. Chi Chinese J. Phys. 36, 355(1998).
    19. S. H. Tsai, C.C. Chi , M.K.Wu, Physica C 339, 155(2000).
    20. L A Tietz, C. B. Carter, D. K. Lathrop, S. E. Russek, R. A. Buhrman,and J. R. Michael, J, Mater. Res.4, 1072 (1989).
    21. Alarco, J.A.; Olsson, E.; Ivanov, Z.G.; Winkler, D.; Stepantsov, E.A.; Lebedev, O.I.; Vasiliev, A.L.; et. al. Physica C.247, 263-279(1995)
    22. D. K. Fork, A. Barre-a, T. H. Geballe, A. M. Viano, and D. Fenner,Appl. Phys. Lett, 57, 2504 ( 1990).
    23. Cl. M. Hwang Q. Y. Ying and H. S. Kwok Applied Physics Letters 58, 2429(1991)
    24. G. Brorsson, E. Olsson, Z. G. Ivanov, E. A. Stepantsov,a) J. A. Alarco, Yu. Boikov,b and T. Claeson J. Appl. Phys. 75 (12), (1994).
    25. Dong, Kim, and Kwok PHYSICA C 212 (3-4)323-331, (1993)
    26. D. Li and B. Rosenstein 1. Phys. Rev. B 70, 144521 (2004)
    27. E.M. Gyorgy, R.B. van Dover, K.A. Jackson, L.F. Schneemeyer, J.V. Waszczak, Appl. Phys. Lett. 55 ,283, 1989.
    28. E. H. Brandt, M. Indenbom, Phys. Rev. B, 48 ,12893, (1993).
    29. E. Zeldov, J. R. Clem, M. McElfresh, M. Darwin, Phys. Rev. B. 49, 9802 (1994)
    30. A. A. Zhukov, H. Kupfer, V. A. Rybachuk, L. A. Ponomarenko, V. A. Murashov and A. Yu. Martynkin Physica C 219, 99(1994).
    31. K. Char, M.S. Cololugh, S.M. Garrison, N. Newman, and G.. Zaharchuk, Appl. Phys. Lett. 59, 733 (1991).
    32. K. Char, M.S. Cololugh, L.P. Lee, and G.. Zaharchuk, Appl. Phys. Lett. 59, 2177 (1991)
    33. M. Y. Li, el. al, Chinese J. Phys. 31, 1079 (1993).
    34. M.Y. Li, et. al, Physica C 235, 589 (1994).
    35. S.H. Tsai, C.C. Chi, M.K.Wu, Chinese J. Phys. 36, 355 (1998).
    36. S.H. Tsai, C.C. Chi, M.K.Wu, Physica C 339, 155 (2000).
    37. R. Gross, P. Chaudhari, D. Dimos, A. Gupta, and G. Koren, Phys. Rev. Lett. 64, 228 (1990).
    38. D.Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990).
    39. L.Civale, et.al., cond-mat/0308505 v1 25(2003).
    40. A.Diaz, et.al., Phys.Rev.Lett., 80, 3855 (1998).
    41. J.H.Durrell, et.al., Phys.Rev.Lett., 90, 247006 (2003).
    42. L.Civale, et.al., Appl.Phys.Lett., 84, 2121 (2004).
    43. B.Maiorov,et.al.,IEEE Trans.Appl.Supercond., 15, No2, 2582 (2005).
    44. D.Dimos, P. Chaudhari, J. Mannhart, and F.K. LeGoues, Phys. Rev. Lett. 61, 219 (1988).
    45. H. Hilgenkamp, J. Mannhart, and B. Mayer, Phys. Rev. B 53, 14586 (1996).
    46. S.E. Russek, D.K. Lathrop, B.H. Moeckly, R.A. Buhrmann, and D.H. Shin, Appl. Phys. Lett.57, 1155 (1990).
    47. R. Gross, P. Chaudhari, M. Kawasaki, and A. Gupta, Phys. Rev. B 42, 10735 (1990).
    48. M. Sigrist and T. M. Rice, Rev. Mod. Phys. 67, 503(1995)

    Part B
    1. J. A. Alarco, G. Brorsson, Z, G. Ivanov, P.-k Nilsson, and E. Olsson Appl. Phys. Let. 61 , 723(1992)
    2. Alarco, J.A.; Olsson, E.; Ivanov, Z.G.; Winkler, D.; Stepantsov,E.A.; Lebedev, O.I.; Vasiliev, A.L.; et. al. Physica C, 247, p263-279,(1995)
    3. Cl. M. Hwang Q. Y. Ying and H. S. Kwok Appl. Phys. Let. 58,p2429-2431(1991)
    4. D. K. Fork, A. Barre-a, T. H. Geballe, A. M. Viano, and D. Fenner, Applied Physics Letters, 57, 2504 ( 1990).
    5. Solid state physics Grosso and Pastori parravicini (1999)
    6. Density Functional Theory of Polarizability Gerald D.Mahan, K. R. Subbaswamy(1990)
    7. Hohenberg , Kohn Phys .Rev. B 136 p864(1964)
    8. W. Kohn and L. J. Sham, Phys .Rev. B 140, A1133(1965)
    9. NCTS CMR Summer Course Density Functional Theory and Computational Methods Lecturer :Guang -Yu Guo(2003)
    10. Spring School First-principles Computational Material Research Introductory Level, Lecture Notes Lecturer : T. C. Leung(2006)
    11. Gerog Kresse et al VASP manu VASP Home Page http://cms.mpi.univie.ac.at/vasp/, Hands-on tutorial course on VASP http://cms.mpi.univie.ac.at/vasp-workshop/, VASP Manual http://cms.mpi.univie.ac.at/vasp/vasp.html.
    12. P.E. Blochl. Phys. Rev. B. 50,17953(1994)
    13. G.Kresse and D. Joubert Phys. Rev. B. 59, 1758(1999)
    14. Bala´zs Kra´lik, Eric K. Chang, and Steven G. Louie VOLUME 57, NUMBER 12, Phys. Rev. B. 57, 7027(1998)
    15. M. W. Finnis and A. T. Paxton M. Methfessel M. van Schilfgaarde Phys. Rev. Lett. 81, 5149(1998)
    16. G. Stapper M. Bernasconi Via Emanueli N. Nicoloso and M. Parrinello Phys. Rev. B. 59, 797(1999)
    17. G. Jomard,* T. Petit,* and A. Pasturel L. Magaud G. Kresse and J. Hafner Phys. Rev. B. 59, 4044(1999)
    18. W. Zhong, R. D. King-Smith, and David Vanderbilt Phys. Rev. Lett. 72, 3618–3621 (1994)
    19. Shinsuke Yamanaka , Masaki Fujikane , Tsuyoshi Hamaguchi , Hiroaki Muta , Taku Oyama ,b b a,* Tetsushi Matsuda , Shin-ichi Kobayashi , Ken Kurosaki Journal of Alloys and Compounds 359, 109(2003)
    20. R. Terki, H. Feraoun, G. Bertrand, and H. Aourag PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS 242,1054( 2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE