簡易檢索 / 詳目顯示

研究生: 李佳津
Li, Chia-Chin
論文名稱: 微生物對低放射性廢棄物處置之影響
Microbial effect on low level radioactive waste disposal
指導教授: 周鳳英
口試委員: 張清土
溫曉薇
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 91
中文關鍵詞: 微生物低放射性廢棄物微生物腐蝕核種吸附
外文關鍵詞: Microorganism, Low level radioactive waste, Bio-corrosion, Radionulcide sorption
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的是對台灣高溫、多濕之特殊海島型氣候環境,建立本土微生物對工程障壁材料腐蝕及核種吸附之資料庫,作為 Low Level Radioactive Waste (LLRW)最終處置安全評估之參數。實驗中由蘭嶼貯存場內、外環境進行微生物取樣,評估當地微生物之活度,從中分離及鑑定本土菌株,探討其生長特性、輻射耐受性,從中挑選具特殊性或代表性之菌株進行後續微生物對各工程障壁之腐蝕效應及對放射性核種能力之評估。
    微生物取樣結果顯示蘭嶼貯存場內、外環境微生物活動旺盛,環境水樣及土樣微生物含量分別為101~106 CFU/mL及103~107 CFU/g,場內重裝桶中之鏽蝕桶材之細菌與真菌量均可達103 CFU/g,微生物相十分豐富,顯示蘭嶼貯存場中之微生物具多樣化。
    從蘭嶼分離之28株菌株,包含細菌、酵母菌、放射線菌及真菌,於實驗室環境中探討各菌株之特性及於輻射場中之生長力,結果顯示分離之真菌對酸鹼值之耐受範圍明顯高於分離之細菌及放射線菌,大多數真菌可耐受於pH 10之強鹼環境中,菌株生長代謝可降低培養液之pH,營造出適合其生長之酸鹼值環境。分離菌株間之輻射抗性有相當大之差異,D10值在0.15 kGy~ 2.05 kGy之間,而所有分離菌株皆可於劑量率3.4x105 μSv/h 之輻射環境中生長,此劑量率遠高於重裝桶表面劑量率100 μSv/h,證實本土菌株能於重裝桶中之輻射環境中生長,微生物確為接觸放射性廢棄物之第一線生物。
    受測菌株對鍍鋅碳鋼試片之腐蝕結果指出,各受測菌株生長對鍍鋅碳鋼試片表面均會造成大小不一之刻紋,影響程度因菌株而異,其中PEN1菌株對鍍鋅鋼片之影響最為嚴重,在135天培養期內造成大部分表面鍍鋅層消失,露出碳鋼基材,SEM-EDS分析結果顯示表面相對鋅含量僅剩餘5.26±0.69 wt%,鐵含量則有94.74±0.69 wt%。培養液中鋅濃度之測定結果顯示PEN1菌株生長造成鍍鋅層之鋅離子外釋至培養液中,大部分之鋅離子直接吸附於菌體內,另外電化學測試之結果指出,各菌株培養後之鍍鋅碳鋼試片腐蝕速率有所差異,其中以PEN1菌株培養之試片腐蝕速率最高,為144.05 μm/year。
    受測菌株對水泥固化體之腐蝕測試結果指出,各菌株均能於含水泥固化體之環境中生長(初始pH值>10),於培養270天後,各菌株生長能降低培養液之pH值至10以下。培養液中鈣及矽濃度測定之結果顯示,受測菌株之生長會加速水泥固化體中鈣離子釋出至溶液中,力學性質測試結果顯示,受測菌株與水泥固化體培養270天之抗壓強度與未接菌者相比並無顯著差別。
    受測菌株對鈷(Co)、鍶(Sr)、銫(Cs)金屬元素及放射性核種之吸附結果顯示,所有菌株均會吸附此三種元素及放射性核種,吸附能力因菌株及金屬種類不同而有所差異,其中CAN菌株對鈷之元素之吸附係數及放射性核種析吸附kd值為受測菌株中最高者,分別為234.77±12.18 μg/g、5186.42±174.40,遠高於其他受測菌株。受測菌株對Cs元素及核種吸附能力均不佳。
    本研究結果證實台灣本土菌株於貯存場輻射環境中生長並不會受到抑制,其生長代謝可能會影響低放處置工程障壁材料使用年限,對於放射性核種亦具吸附之能力,因此在未來之最終低放處置場址評估中,須將當地微生物相之影響列入安全評估。

    關鍵字:微生物、低放射性廢棄物、生物腐蝕、核種吸附


    The purpose of this study is to evaluate the effect of microorganisms on the corrosion of engineering barriers for low-level radioactive waste (LLRW) and their ability to adsorb radionuclides in the warm and humid climate of Taiwan. Native microbial strains were sampled from outside and inside Lanyu repository and were isolated and identified to investigate their radiation tolerance, adsorption of radionuclides and effect on the corrosion of engineering barriers.
    The results thus obtained revealed that microbial activity is high both inside and outside Lanyu repository, where with microbial contents in water and soil samples range from 101~106 CFU/mL and 103~107 CFU/g, respectively. Additionally, the microbial contents on the surface of LLRW containers in Lanyu repository were in the range of 101 ~103 CFU/g. Of the microorganisms that were sampled inside and outside of Lanyu repository, 28 species, including bacteria, yeast, actinobacteria and fungi, were isolated for use in subsequent experiments.
    The isolated fungal strains can tolerate wider range of pH values than isolated bacteria or actinobacteria: even in a harsh medium at pH 10, their growth and metabolism reduces the pH of the medium to provide a suitable environment in which other strains can grow.
    Furthermore, a significant variation in the resistance of isolates to radiation was observed, with D10 values in the range 0.15 kGy~2.05 kGy for the isolated strains. All isolates could grow in the environment with the dose rate of 3.4x105 μSv/h. This dose rate greatly exceeded the dose rate on the surface of container. This demonstrated that the isolated local strains could survive under radiation in the LLRW repository.
    The results of the corrosion tests using the strains of interest that were cultured for 135 days and a galvanized carbon steel specimen revealed that all of tested strains produced notches of various sizes on the specimen. Interestingly, the PEN1 strain decomposed the galvanized surface layer and exposed the carbon steel substrate; the SEM-EDS results showed that the relative zinc content of the surface was 5.26±0.69 wt% and the iron content was 94.74±0.69 wt%. Therefore, the PEN1 strain released zinc from the galvanized carbon steel specimen into the culture medium, and the released zinc ions became accumulated in biomass. The electrochemical test results revealed that the rate of corrosion of the tested specimens varied with the microbial strains, and the specimen which cultured with PEN1 strain was corroded at the highest rate of 144.05 μm/year.
    The results of the corrosion test that involved 270 days of culturing of tested strains on solidified cement revealed growth of the strains, accompanied by a reduction of the pH of the medium below 10. The growth of the tested strains accelerated the release of calcium from the solidified cement. However, this release of calcium had no significant influence on compressive strength.
    All of the tested strains adsorbed cobalt, strontium and cesium. Their adsorption capacity depended strongly on the species of the strain and the metal. The CAN strain had the greatest capacity to adsorb cobalt, with an adsorption coefficient of 234.77±12.18 μg/g and a Kd value of 5186.42±174.40.
    This study demonstrated that local microbial strains can grow in the environment of LLRW disposal repository, and thier growth and metabolism may affect the function of engineering barriers of LRRW repository; moreover, isolated strains have adsorption capacity for radionuclides. Therefore, microbial effect must be considered as a safety assessment for the final disposal of LLRW in Taiwan.

    Keywords: Microorganism, Low-level radioactive waste, Bio-corrosion, Radionuclide sorption

    中文摘要 i Abstract iii 誌謝 v 目錄 vii 表目錄 x 圖目錄 xi 第一章 前言 1 第一節 研究動機 1 第二節 研究目的 2 第二章 文獻回顧 3 第一節 低放射性廢棄物來源 3 第二節 國外低放射性廢棄物處置 3 第三節 微生物對低放射性廢棄物處置場之影響 5 3-1各國放射性廢棄物貯存場中微生物之含量 5 3-2微生物對放射性廢棄物貯存場工程障壁之影響 6 3-3微生物對放射性核種之吸附與遷移 8 第三章 材料與方法 9 第一節 研究架構 9 第二節 蘭嶼貯存場及其環境微生物含量 9 2-1蘭嶼貯存場及其環境微生物之取樣 9 2-2微生物用培養基及磷酸緩衝液之配製 10 2-3微生物含量之測定 11 2-4 分離菌株之培養與鑑定 12 第三節 分離菌株之生長特性與耐輻射能力 13 3-1分離菌株生長之ph值變化 13 3-2分離菌株之酸鹼耐受性 14 3-3分離菌株之輻射抗性 14 3-4分離菌株於不同劑量輻射場中之生長力測試 15 第四節 分離菌株對鍍鋅碳鋼試片之腐蝕影響 16 4-1鍍鋅碳鋼試片之製備 16 4-2生物膜與腐蝕觀測 16 4-3以icp-aes分析釋入至培養液中及被菌體吸附之元素 17 4-4掃描式電子顯微鏡(sem)觀察與eds表面元素分析 17 4-5電化學分析 18 第五節 分離菌株對水泥固化體之腐蝕影響 19 5-1水泥固化體試體之製備 19 5-2生物膜鏡檢觀測 20 5-3以icp-aes分析釋出之元素 20 5-4抗壓強度測試 20 第六節 分離菌株對金屬元素與放射性核種之吸附能力 21 6-1分離菌株對co、sr、cs元素之吸附能力 21 6-2分離菌株對 co、sr、cs 核種之吸附實驗 22 第四章 結果 23 第一節 蘭嶼貯存場環境之微生物含量 23 1-1微生物取樣 23 1-2微生物含量之測定 23 1-3 分離菌株之鑑定 24 第二節 分離菌株之生長特性與耐輻射能力 25 2-1 菌株生長造成培養液之ph值變化 25 2-2分離菌株對生長環境之ph值的耐受性 26 2-3分離菌株之輻射抗性. 27 2-4分離菌株於不同劑量率輻射場中之生長力 28 第三節 分離菌株對貯存桶材鍍鋅碳鋼試片之腐蝕 29 3-1腐蝕鏡檢觀測與培養液ph測量 29 3-2 icp-aes分析釋出之元素含量 30 3-3掃描式電子顯微鏡觀察與eds元素分析 32 第四節 分離菌株對水泥固化體之腐蝕 33 4-1腐蝕鏡檢觀測與培養液ph測量 33 4-2 icp-aes分析釋出之元素含量 34 4-3 抗壓強度測試 35 第五節 分離菌株對金屬元素與放射性核種之吸附能力 36 5-1分離菌對鈷、鍶、銫元素之吸附能力 36 5-2分離菌株對鈷、鍶、銫放射性核種之吸附能力 37 第五章 討論 38 第一節 微生物活度 38 第二節 分離菌株生長特性與抗輻射能力 40 第三節 分離菌株生長對鍍鋅鋼片之影響評估 42 第四節 分離菌株對水泥固化體之影響評估 44 第五節 分離菌株對金屬元素與放射性核種之吸附能力 47 第六章 結論 49 第七章 圖表 51 第八章 參考文獻 85

    [1] 行政院原子能委員會放射性物料管理局,"低放廢棄物貯存量", 行政院原子能委員會,http://www.aec.gov.tw/www/index.php
    [2] S. Stroes-Gascoyne and F. P. Sargent, "The Canadian approach to microbial studies in nuclear waste management and disposal," Journal of Contaminant Hydrology, vol. 35, pp. 175-190, 1998.
    [3] T. L. Kieft, W. P. Kovacik, D. B. Ringelberg, D. C. White, D. L. Haldeman, P. S. Amy, and L. E. Hersman, "Factors limiting microbial growth and activity at a proposed high-level nuclear repository, Yucca mountain, Nevada," Applied and Environmental Microbiology, vol. 63, pp. 3128-3133, 1997.
    [4] G. Farkas, L. G. Gazsó, and G. Diósi, "Characterization of subterranean bacteria in the Hungarian Upper Permian Siltstone (Aleurolite) Formation," Canadian Journal of Microbiology, vol. 46, pp. 559-564, 2000.
    [5] S. Stroes-Gascoyne, C. J. Hamon, D. A. Dixon, and J. B. Martino, "Microbial analysis of samples from the tunnel sealing experiment at AECL's Underground Research Laboratory," Physics and Chemistry of the Earth, vol. 32, pp. 219-231, 2007.
    [6] J. M. West and I. G. McKinley, "Progress in the geomicrobiology of radioactive waste disposal," Scientific Basis for Nuclear Waste Management Xxiv, vol. 663, pp. 827-835, 2000.
    [7] S. StroesGascoyne and J. M. West, "Microbial studies in the Canadian nuclear fuel waste management program," Fems Microbiology Reviews, vol. 20, pp. 573-590, 1997.
    [8] P. Humphreys, R. McGarry, A. Hoffmann, and P. Binks, "DRINK: a biogeochemical source term model for low level radioactive waste disposal sites," Fems Microbiology Reviews, vol. 20, pp. 557-71, 1997.
    [9] G. Diósi, J. Telegdi, G. Farkas, L. G. Gazsó, and E. Bokori, "Corrosion influenced by biofilms during wet nuclear waste storage," International Biodeterioration & Biodegradation, vol. 51, pp. 151-156, 2003.
    [10] A. K. Parande, S. Muralidharan, V. Saraswathy, and N. Palaniswamy, "Influence of microbiologically induced corrosion of steel embedded in ordinary Portland cement and Portland pozzolona cement," Anti-Corrosion Methods and Materials, vol. 52, pp. 148-153, 2005.
    [11] M. Fomina, V. S. Podgorsky, S. V. Olishevska, V. M. Kadoshnikov, I. R. Pisanska, S. Hillier, and G. M. Gadd, "Fungal Deterioration of Barrier Concrete used in Nuclear Waste Disposal," Geomicrobiology Journal, vol. 24, pp. 643-653, 2007.
    [12] R. D. Rogers, M. A. Hamilton, R. H. Veeh, and J. W. J. McConnell, "Microbial degradation of low-level radioactive waste. Volume 2, Annual report for FY 1994," NUREG/CR--6188-Vol.2; INEL--95/0153-Vol.2; Other: ON: TI95017307, 1995.
    [13] S. Stroes-Gascoyne, "Microbial occurrence in bentonite-based buffer, backfill and sealing materials from large-scale experiments at AECL's Underground Research Laboratory," Applied Clay Science, vol. 47, pp. 36-42, 2010.
    [14] S. Stroes-Gascoyne, C. J. Hamon, P. Maak, and S. Russell, "The effects of the physical properties of highly compacted smectitic clay (bentonite) on the culturability of indigenous microorganisms," Applied Clay Science, vol. 47, pp. 155-162, 2010.
    [15] E. Chi Fru and R. Athar, "In situ bacterial colonization of compacted bentonite under deep geological high-level radioactive waste repository conditions," Appl Microbiol Biotechnol, vol. 79, pp. 499-510, 2008.
    [16] C. Mulligan, R. Yong, and M. Fukue, "Some effects of microbial activity on the evolution of clay-based buffer properties in underground repositories," Applied Clay Science, vol. 42, pp. 331-335, 2009.
    [17] S. Fukunaga, T. Jintoku, Y. Iwata, M. Nakayama, T. Tsuji, N. Sakaya, K.-i. Mogi, and M. Ito, "Investigation of Microorganisms in Bentonite Deposits," Geomicrobiology Journal, vol. 22, pp. 361-370, 2005.
    [18] E. A. Luk’yanova, E. V. Zakharova, L. I. Konstantinova, and T. N. Nazina, "Sorption of radionuclides by microorganisms from a deep repository of liquid low-level waste," Radiochemistry, vol. 50, pp. 85-90, 2011.
    [19] N. R. Parekh, J. M. Poskitt, B. A. Dodd, E. D. Potter, and A. Sanchez, "Soil microorganisms determine the sorption of radionuclides within organic soil systems," J Environ Radioact, vol. 99, pp. 841-52, 2008.
    [20] P. Pohl and W. Schimmack, "Adsorption of Radionuclides (134Cs, 85Sr, 226Ra, 241Am) by Extracted Biomasses of Cyanobacteria (Nostoc Carneum, N. Insulare, Oscillatoria Geminata and Spirulina Laxis-Sima) and Phaeophyceae (Laminaria Digitata and L. Japonica; Waste Products from Alginate Production) at Different pH," Journal of Applied Phycology, vol. 18, pp. 135-143, 2006.
    [21] M. Simonoff, C. Sergeant, S. Poulain, and M. S. Pravikoff, "Microorganisms and migration of radionuclides in environment," Comptes Rendus Chimie, vol. 10, pp. 1092-1107, 2007.
    [22] M. J. Wilkins, F. R. Livens, D. J. Vaμghan, I. Beadle, and J. R. Lloyd, "The influence of microbial redox cycling on radionuclide mobility in the subsurface at a low-level radioactive waste storage site," Geobiology, vol. 5, pp. 293-301, 2007.
    [23] S. V. Avery, "Cesium Accumulation by Microorganisms - Uptake Mechanisms, Cation Competition, Compartmentalization and Toxicity," Journal of Industrial Microbiology, vol. 14, pp. 76-84, 1995.
    [24] S. Dulon, S. Parot, M. L. Delia, and A. Bergel, "Electroactive biofilms: new means for electrochemistry," Journal of Applied Electrochemistry, vol. 37, pp. 173-179, 2007.
    [25] V. F. Smirnov, D. V. Belov, T. N. Sokolova, O. V. Kuzina, and V. R. Kartashov, "Microbiological corrosion of aluminum alloys," Applied Biochemistry and Microbiology, vol. 44, pp. 192-196, 2008.
    [26] Nuclear Regulatory Commission, NRC's regulations, Title 10, Chapter I, of the Code of Federal Regulations, part 61.7 Cocepts (b-2), 2012
    [27] Nuclear Regulatory Commission, NRC's regulations, Title 10, Chapter I, of the Code of Federal Regulations, part 61.56 waste characteristics (b)(2), 2012
    [28] 台灣電力公司, 低放射性廢棄物最終處置計畫書, 2007年
    [29] 陳式,馬明燮(1998),中低水平放射性廢物的安全處置,pp.139~143,原子能出版社,北京。
    [30] 郭明峰, "皂土-碎石混合物之壓實性質," 碩士, 土木工程研究所, 國立中央大學, 桃園縣, 2004.
    [31] Lindberg, C., 2005, SFR - Final Repository for Radioactive Operational Waste, Proceedings of 2005 Taiwan Atomic Energy Forum (TAEF), April 25-26, 2005, Longtan, Taiwan, 88-97p.
    [32] 紀立民,國際低放射性廢棄物處置概況研究,INER-2708,2004。
    [33] A. J. Francis, S. Dobbs, and B. J. Nine, "Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites," Appl Environ Microbiol, vol. 40, pp. 108-13, 1980.
    [34] T. N. Nazina, E. A. Luk'yanova, E. V. Zakharova, L. I. Konstantinova, S. N. Kalmykov, A. B. Poltaraus, and A. A. Zubkov, "Microorganisms in a Disposal Site for Liquid Radioactive Wastes and Their Influence on Radionuclides," Geomicrobiology Journal, vol. 27, pp. 473-486, 2010.
    [35] T. N. Nazina, A. V. Safonov, I. M. Kosareva, V. S. Ivoilov, A. B. Poltaraus, and B. G. Ershov, "Microbiological Processes in the Severnyi Deep Disposal Site for Liquid Radioactive Wastes," Microbiology, vol. 79, pp. 528-537, 2010.
    [36] J.H. Wolfram, R.D. Rogers., L.G. Gazso. Assessment of microbially influenced corrosion. Microbial Degradation Processes in Radioactive Waste Repository and in Nuclear Fuel Storage Areas, Kluwer Academic Publishers London. P. 33-37, 79.1997.
    [37] T. Mori, T. Nonaka, K. Tazaki, M. Koga, Y. Hikosaka, and S. Noda, "Interactions of Nutrients, Moisture and Ph on Microbial Corrosion of Concrete Sewer Pipes," Water Research, vol. 26, pp. 29-37, 1992.
    [38] D. J. Roberts, D. Nica, G. Zuo, and J. L. Davis, "Quantifying microbially induced deterioration of concrete: initial studies," International Biodeterioration & Biodegradation, vol. 49, pp. 227-234, 2002.
    [39] M. A. Idachaba, K. Nyavor, N. O. Egiebor, and R. D. Rogers, "Microbial stability evaluation of waste containment materials using a biofilm formation approach," Environmental Engineering Science, vol. 18, pp. 25-41, 2001.
    [40] M. A. Idachaba, K. Nyavor, and N. O. Egiebor, "Microbial stability evaluation of cement-based waste forms at different waste to cement ratio," Journal of Hazardous Materials, vol. 96, pp. 331-340, 2003.
    [41] M. A. Idachaba, K. Nyavor, N. O. Egiebor, and R. D. Rogers, "Limitations of the NRC method of microbial stability evaluation of waste forms," Advances in Environmental Research, vol. 7, pp. 273-281, 2003.
    [42] M. A. Idachaba, K. Nyavor, and N. O. Egiebor, "The leaching of chromium from cement-based waste form via a predominantly biological mechanism," Advances in Environmental Research, vol. 8, pp. 483-491, 2004.
    [43] O. Aviam, G. Bar-Nes, Y. Zeiri, and A. Sivan, "Accelerated biodegradation of cement by sulfur-oxidizing bacteria as a bioassay for evaluating immobilization of low-level radioactive waste," Applied and Environmental Microbiology, vol. 70, pp. 6031-6036, 2004.
    [44] J. V. Perfettini, E. Revertegat, and N. Langomazino, "Evaluation of cement degradation induced by the metabolic products of two fungal strains," Cellular and Molecular Life Sciences, vol. 47, pp. 527-533, 1991.
    [45] J. D. Gu, T. E. Ford, N. S. Berke, and R. Mitchell, "Biodeterioration of concrete by the fungus Fusarium," International Biodeterioration & Biodegradation, vol. 41, pp. 101-109, 1998.
    [46] H. Armentia and C. Webb, "Ferrous sulphate oxidation using <i>Thiobacillus ferrooxidans cells immobilised in polyurethane foam support particles," Applied Microbiology and Biotechnology, vol. 36, pp. 697-700, 1992.
    [47] D. Bermont-Bouis, M. Janvier, P. A. D. Grimont, I. Dupont, and T. Vallaeys, "Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel," Journal of Applied Microbiology, vol. 102, pp. 161-168, 2007.
    [48] J. Z. Duan, B. R. Hou, and Z. G. Yu, "Characteristics of sulfide corrosion products on 316L stainless steel surfaces in the presence of sulfate-reducing bacteria," Materials Science & Engineering C-Biomimetic and Supramolecular Systems, vol. 26, pp. 624-629, 2006.
    [49] H. A. Videla and L. K. Herrera, "Microbiologically influenced corrosion: looking to the future," International Microbiology, vol. 8, pp. 169-180, 2005.
    [50] N. Smart, A. Rance, B. Reddy, S. Lydmark, K. Pedersen, and C. Lilja, "Further studies of in situ corrosion testing of miniature copper-cast iron nuclear waste canisters," Corrosion Engineering Science and Technology, vol. 46, pp. 142-147, 2011.
    [51] R. C. Newman, K. Rumash, and B. J. Webster, "The Effect of Precorrosion on the Corrosion Rate of Steel in Neutral Solutions Containing Sulfide - Relevance to Microbially Influenced Corrosion," Corrosion Science, vol. 33, pp. 1877-1884, 1992.
    [52] F. King, "Microbiologically influenced corrosion of nuclear waste containers," 2009.
    [53] J. Horn, D. A. Jones, A. Rivera, and T. Lian, "MIC evaluation and testing for the Yucca Mountain repository," CORROSION 98, 1998.
    [54] R. N. Kumar and R. Nagendran, "Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans," Chemosphere, vol. 66, pp. 1775-1781, 2007.
    [55] A. Negishi, T. Muraoka, T. Maeda, F. Takeuchi, T. Kanao, K. Kamimura, and T. Sμgio, "Growth inhibition by tungsten in the sulfur-oxidizing bacterium Acidithiobacillus thiooxidans," Bioscience Biotechnology and Biochemistry, vol. 69, pp. 2073-2080, 2005.
    [56] J. H. Sim, A. H. Kamaruddin, W. S. Long, and G. Najafpour, "Clostridium aceticum - A potential organism in catalyzing carbon monoxide to acetic acid: Application of response surface methodology," Enzyme and Microbial Technology, vol. 40, pp. 1234-1243, 2007.
    [57] G. M. Gadd, "Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes," Advances in Microbial Physiology, vol. 41, pp. 47-92, 1999.
    [58] D. Dierksen, P. Kuhner, A. Kappler, and K. G. Nickel, "Microbial corrosion of silicon nitride ceramics by sulphuric acid producing bacteria Acidithiobacillus ferrooxidans," Journal of the European Ceramic Society, 2011.
    [59] G. M. Gadd, "Influence of microorganisms on the environmental fate of radionuclides," Endeavour, vol. 20, pp. 150-156, 1996.
    [60] M. M. Gharieb, M. Kierans, and G. M. Gadd, "Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction, and volatilization," Mycological research, vol. 103, pp. 299-305, 1999.
    [61] D. R. Lovley and E. J. P. Phillips, "Reduction of Uranium by Desulfovibrio-Desulfuricans," Applied and Environmental Microbiology, vol. 58, pp. 850-856, 1992.
    [62] J. Bohac, D. A. Krivolutskii, and T. B. Antonova, "The Role of Fungi in the Biogenous Migration of Elements and in the Accumulation of Radionuclides," Agriculture Ecosystems & Environment, vol. 28, pp. 31-34, 1990.
    [63] K. Pedersen, "Exploration of deep intraterrestrial microbial life: current perspectives," Fems Microbiology Letters, vol. 185, pp. 9-16, 2000.
    [64] M. Ledin, K. Pedersen, and B. Allard, "Effects of pH and ionic strength on the adsorption of Cs, Sr, Eu, Zn, Cd and Hg by Pseudomonas putida," Water Air and Soil Pollution, vol. 93, pp. 367-381, 1997.
    [65] A. Pal, S. Ghosh, and A. K. Paul, "Biosorption of cobalt by fungi from serpentine soil of Andaman," Bioresource Technology, vol. 97, pp. 1253-1258, 2006.
    [66] O. Gulnaz, S. Saygideger, and E. KμSvuran, "Study of Cu (II) biosorption by dried activated sludge: effect of physico-chemical environment and kinetics study," Journal of Hazardous Materials, vol. 120, pp. 193-200, 2005.
    [67] N. Friis and P. Myerskeith, "Biosorption of Uranium and Lead by Streptomyces-Longwoodensis," Biotechnology and Bioengineering, vol. 28, pp. 21-28, 1986.
    [68] M. Galun, E. Galun, B. Z. Siegel, P. Keller, H. Lehr, and S. M. Siegel, "Removal of metal ions from aqueous solutions by <i>Penicillium biomass: Kinetic and uptake parameters," Water, Air, & Soil Pollution, vol. 33, pp. 359-371, 1987.
    [69] Z. Aksu, Y. Sag, and T. Kutsal, "The Biosorption of Copper(Ii) by C-Vulgaris and Z-Ramigera," Environmental Technology, vol. 13, pp. 579-586, 1992.
    [70] E. Fourest and J.-C. Roux, "Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH," Applied Microbiology and Biotechnology, vol. 37, pp. 399-403, 1992.
    [71] A. Javaid, R. Bajwa, and T. Manzoor, "Biosorption of Heavy Metals by Pretreated Biomass of Aspergillus Niger," Pakistan Journal of Botany, vol. 43, pp. 419-425, 2011.
    [72] 盧正添, "熱處理製程對 FeCoNiCrCu0. 5 塊狀高熵合金在不同環境腐蝕特性之研究," 2008.
    [73] N. Christofi and J. C. Philp, "Microbiology of subteranean waste sites," Cellular and Molecular Life Sciences, vol. 47, pp. 524-527, 1991.
    [74] S. StroesGascoyne and J. M. West, "An overview of microbial research related to high level nuclear waste disposal with emphasis on the Canadian concept for the disposal of nuclear fuel waste," Canadian Journal of Microbiology, vol. 42, pp. 349-366, 1996.
    [75] E. Juzeliunas, R. Ramanauskas, A. Lμgauskas, K. Leinartas, M. Samuleviciene, A. Sudavicius, and R. Juskenas, "Microbially influenced corrosion of zinc and aluminium - Two-year subjection to influence of Aspergillus niger," Corrosion Science, vol. 49, pp. 4098-4112, 2007.
    [76] J. Monteny, E. Vincke, A. Beeldens, N. De Belie, L. Taerwe, D. Van Gemert, and W. Verstraete, "Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete," Cement and Concrete Research, vol. 30, pp. 623-634, 2000.
    [77] F. Chou and S. Tan, "Manganese (II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture," Journal of Bacteriology, vol. 172, pp. 2029-2035, 1990.
    [78] F. I. Chou and S. T. Tan, "Salt-Mediated Multicell Formation in Deinococcus-Radiodurans," Journal of Bacteriology, vol. 173, pp. 3184-3190, 1991.
    [79] S. J. van Gerwen, F. M. Rombouts, K. van't Riet, and M. H. Zwietering, "A data analysis of the irradiation parameter D10 for bacteria and spores under various conditions," J Food Prot, vol. 62, pp. 1024-32, 1999.
    [80] Hot-dip galvanizing: process and product, Brazilian Institute of Lead And Zinc Information-ICZ, Report no. 10 ICZ-Z 4. Sao Paulo,Brazil, 1972.

    [81] 黃兆龍,「高性能混凝土理論與實務」,詹氏書局 2000.
    [82] 邱怡瑄, "低放處置場工程障壁之溶出失鈣及劣化敏感度分析," 碩士, 土木工程研究所, 國立中央大學, 桃園縣, 2009.
    [83] L. Velasquez and J. Dussan, "Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus," Journal of Hazardous Materials, vol. 167, pp. 713-6, 2009.
    [84] R. Rakhshaee, M. Khosravi, and M. T. Ganji, "Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides," Journal of Hazardous Materials, vol. 134, pp. 120-9, 2006.
    [85] A. Pal, S. Ghosh, and A. K. Paul, "Biosorption of cobalt by fungi from serpentine soil of Andaman," Bioresour Technol, vol. 97, pp. 1253-8, 2006.
    [86] I. Ahmad, M. Imran, M. I. Ansari, A. Malik, and J. Pichtel, "Metal Tolerance and Biosorption Potential of Soil Fungi: Applications for a Green and Clean Water Treatment Technology," pp. 321-361, 2011.
    [87] S. V. Avery, "Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity," Journal of Industrial Microbiology & Biotechnology, vol. 14, pp. 76-84, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE