研究生: |
張政暐 Chang, Cheng Wei |
---|---|
論文名稱: |
以基因晶片分析基因表現與功能性基因體學 Gene expression profiling and functional genomics by microarray analysis |
指導教授: |
許志楧
Hsu, Ian C. |
口試委員: |
張德卿
王子豪 許文郁 莊淳宇 許志楧 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 92 |
中文關鍵詞: | 基因晶片 、基因表現 、功能性基因體學 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著大型基因體計畫的進展,大量的生物資料使我們得以更宏觀的角度了解生物問題。而在高通量量測技術中,基因晶片的發展更是近十幾年來應用在基因表現量測的利器。然而從大量的基因表現數據萃取出生物訊息的過程中,往往得先克服許多困難,譬如量測系統的穩定性與可靠性,生物樣品本身的變異與多樣性,以及大量資料的複雜度。如何提升基因晶片分析的可靠性,以及運用現有的分析與注釋工具統整大量資料,以歸納出資料所指出生物現象,就成了運用基因晶片這一利器所必須克服的問題。本論文利用自家點印的基因晶片探討人類細胞的抑癌機制在受到多瘤病毒SV40轉化後的改變,以及蒐集大量的Affymetrix基因晶片資料,以總體分析法(mata-analysis)重新鑑定人類持家基因與組織特異基因的成員與功能。這兩個研究主題同樣循著資料的品管與歸一化得到可靠的量測數值,再依據生物問題設計統計方法與運用生物注釋工具,得到生物結果與拓展新的研究方向。期望從中歸納出的分析概念能有助於之後轉錄體相關的研究,以及應用在其他類型的高通量量測技術,以利功能性基因體學的進展。
多瘤病毒Simian virus 40 (SV40)有能力促使細胞走向癌化,而與其相關的研究成為了近代我們對癌症形成機制的知識基礎。我們運用自家點印的雙色基因晶片,比較了人類肺部纖維母細胞MRC-5以及其受到SV40轉化後的細胞株MRC5CVI,在受到UVB照射以後基因表現的改變。我們先以functional enrichment analysis總覽兩株細胞在照射UVB以後基因表現的改變,接著我們用expressional correlation的方法從兩組基因晶片實驗篩選出13個表現歧異基因。最後以cell cycle analysis與cell death assay驗證基因表現數據所指出的SV40轉化對抑癌機制的影響。結果發現MRC5CVI失去調控chromosome condensation、DNA repair、cell cycle arrest,以及apoptosis等相關基因,但保有在受到輻射照射以後上調oxidative phosphorylation相關基因表現的能力。然而MRC5CVI雖然無法調控apoptosis基因的表現,在照射UVB以後的細胞死亡狀況卻顯著地比MRC-5來得高,此一結果與過去研究認為癌化細胞對輻射照射的敏感度較低的認知不同,也指出MRC5CVI可能透過transcription-independent的機制走向細胞死亡。後續研究SV40轉化細胞對輻射的敏感度,將可進一步了解敏感化癌症細胞的分子生物學基礎,以提供癌症放射治療新的方向。
從人類基因中鑑定出持家基因(housekeeping gene, HK gene)與組織特異性基因(tissue-selective genes, TS gene)可以幫助之後基因功能研究的進展,以及組織相關疾病的了解。然而之前的研究侷限於能夠獲取的正常人類組織基因表現的資料不足,使得篩選出來的HK與TS genes缺乏代表性,也間接導致後來關於這兩種基因結構研究的矛盾。我們利用實驗室架構的基因晶片資料庫M2DB,匯整出跨越104組實驗、43種人類組織,總計1431筆Affymetrix 基因晶片原始資料以進行總體分析。除了發展出新的數值與方法來評估基因表現與探討過去研究的優缺點,並指出對於每一種組織,至少需要10個以上的樣本才能明確地鑑定組織的轉錄體。基於這些進展,我們鑑定出2,064個HK genes與2,293個TS genes,並以functional enrichment analysis探討這些基因的功能。結果顯示HK genes與重要的基礎細胞功能有關,而TS genes則與相對應的組織功能高度呼應。比較本研究與過去鑑定的HK genes的差別,我們指出造成過去鑑定的HK genes分歧的一些原因。運用大量資料進行總體分析提升了鑑定出的組織轉錄體的正確性,以及HK genes與TS genes的可靠性。
Reference
1. Pipas JM (2009) SV40: Cell transformation and tumorigenesis. Virology 384: 294-303.
2. Ahuja D, Saenz-Robles MT, Pipas JM (2005) SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24: 7729-7745.
3. DeCaprio JA (2009) How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 384: 274-284.
4. Cantalupo PG, Saenz-Robles MT, Rathi AV, Beerman RW, Patterson WH, et al. (2009) Cell-type specific regulation of gene expression by simian virus 40 T antigens. Virology 386: 183-191.
5. Hein J, Boichuk S, Wu J, Cheng Y, Freire R, et al. (2009) Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J Virol 83: 117-127.
6. Arroyo JD, Hahn WC (2005) Involvement of PP2A in viral and cellular transformation. Oncogene 24: 7746-7755.
7. Sablina AA, Hahn WC (2008) SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer Metastasis Rev 27: 137-146.
8. Wang Q, Li DC, Li ZF, Liu CX, Xiao YM, et al. (2011) Upregulation of miR-27a contributes to the malignant transformation of human bronchial epithelial cells induced by SV40 small T antigen. Oncogene.
9. Smith ML, Seo YR (2002) p53 regulation of DNA excision repair pathways. Mutagenesis 17: 149-156.
10. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22: 9030-9040.
11. Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7: 979-987.
12. Vousden KH, Prives C (2009) Blinded by the Light: The Growing Complexity of p53. Cell 137: 413-431.
13. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, et al. (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126: 107-120.
14. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, et al. (2006) p53 regulates mitochondrial respiration. Science 312: 1650-1653.
15. Hu W, Zhang C, Wu R, Sun Y, Levine A, et al. (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 107: 7455-7460.
16. Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9: 691-700.
17. Feng Z, Levine AJ (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 20: 427-434.
18. Tsai ML, Chang KY, Chiang CS, Shu WY, Weng TC, et al. (2009) UVB radiation induces persistent activation of ribosome and oxidative phosphorylation pathways. Radiat Res 171: 716-724.
19. Sriharshan A, Boldt K, Sarioglu H, Barjaktarovic Z, Azimzadeh O, et al. (2012) Proteomic analysis by SILAC and 2D-DIGE reveals radiation-induced endothelial response: four key pathways. J Proteomics 75: 2319-2330.
20. Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, et al. (2011) Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics 11: 3299-3311.
21. Barjaktarovic Z, Schmaltz D, Shyla A, Azimzadeh O, Schulz S, et al. (2011) Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One 6: e27811.
22. Hess RD, Brandner G (1997) DNA-damage-inducible p53 activity in SV40-transformed cells. Oncogene 15: 2501-2504.
23. Kohli M, Jorgensen TJ (1999) The influence of SV40 immortalization of human fibroblasts on p53-dependent radiation responses. Biochem Biophys Res Commun 257: 168-176.
24. McKay BC, Ljungman M, Rainbow AJ (1998) Persistent DNA damage induced by ultraviolet light inhibits p21waf1 and bax expression: implications for DNA repair, UV sensitivity and the induction of apoptosis. Oncogene 17: 545-555.
25. Smith PJ, Nakeff A, Watson JV (1985) Flow-cytometric detection of changes in the fluorescence emission spectrum of a vital DNA-specific dye in human tumour cells. Exp Cell Res 159: 37-46.
26. Hong JH, Gatti RA, Huo YK, Chiang CS, McBride WH (1994) G2/M-phase arrest and release in ataxia telangiectasia and normal cells after exposure to ionizing radiation. Radiat Res 140: 17-23.
27. Chen CR, Shu WY, Tsai ML, Cheng WC, Hsu IC (2012) THEME: a web tool for loop-design microarray data analysis. Comput Biol Med 42: 228-234.
28. Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1-13.
29. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44-57.
30. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, et al. (2012) Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134.
31. Huang CL, Shu WY, Tsai ML, Chiang CS, Chang CW, et al. (2011) Repeated small perturbation approach reveals transcriptomic steady states. PLoS One 6: e29241.
32. Li CY, Chiang CS, Cheng WC, Wang SC, Cheng HT, et al. (2012) Gene expression profiling of dendritic cells in different physiological stages under Cordyceps sinensis treatment. PLoS One 7: e40824.
33. Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, et al. (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115: 109-121.
34. Tada K, Susumu H, Sakuno T, Watanabe Y (2011) Condensin association with histone H2A shapes mitotic chromosomes. Nature 474: 477-483.
35. Lai SK, Wong CH, Lee YP, Li HY (2011) Caspase-3-mediated degradation of condensin Cap-H regulates mitotic cell death. Cell Death Differ 18: 996-1004.
36. Heale JT, Ball AR, Jr., Schmiesing JA, Kim JS, Kong X, et al. (2006) Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Mol Cell 21: 837-848.
37. Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, et al. (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20: 3705-3714.
38. Maeda T, Hanna AN, Sim AB, Chua PP, Chong MT, et al. (2002) GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Invest Dermatol 119: 22-26.
39. Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, et al. (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23: 176-184.
40. Jin S, Tong T, Fan W, Fan F, Antinore MJ, et al. (2002) GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene 21: 8696-8704.
41. Francis J, Lin W, Rozenblatt-Rosen O, Meyerson M (2011) The menin tumor suppressor protein is phosphorylated in response to DNA damage. PLoS One 6: e16119.
42. Kottemann MC, Bale AE (2009) Characterization of DNA damage-dependent cell cycle checkpoints in a menin-deficient model. DNA Repair (Amst) 8: 944-952.
43. Epping MT, Meijer LA, Krijgsman O, Bos JL, Pandolfi PP, et al. (2011) TSPYL5 suppresses p53 levels and function by physical interaction with USP7. Nat Cell Biol 13: 102-108.
44. Kim EJ, Lee SY, Kim TR, Choi SI, Cho EW, et al. (2010) TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21(WAF1/Cip1) and PTEN/AKT pathway. Biochem Biophys Res Commun 392: 448-453.
45. de Feraudy S, Revet I, Bezrookove V, Feeney L, Cleaver JE (2010) A minority of foci or pan-nuclear apoptotic staining of gammaH2AX in the S phase after UV damage contain DNA double-strand breaks. Proc Natl Acad Sci U S A 107: 6870-6875.
46. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, et al. (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107-120.
47. Casati P, Walbot V (2004) Crosslinking of ribosomal proteins to RNA in maize ribosomes by UV-B and its effects on translation. Plant Physiol 136: 3319-3332.
48. Tornaletti S, Hanawalt PC (1999) Effect of DNA lesions on transcription elongation. Biochimie 81: 139-146.
49. Brash DE, Ziegler A, Jonason AS, Simon JA, Kunala S, et al. (1996) Sunlight and sunburn in human skin cancer: p53, apoptosis, and tumor promotion. J Investig Dermatol Symp Proc 1: 136-142.
50. Ford JM, Hanawalt PC (1997) Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem 272: 28073-28080.
51. Maeda T, Sim AB, Leedel DA, Chua PP, Chomey EG, et al. (2003) UV induces GADD45 in a p53-dependent and -independent manner in human keratinocytes. J Cutan Med Surg 7: 119-123.
52. Latonen L, Laiho M (2005) Cellular UV damage responses--functions of tumor suppressor p53. Biochim Biophys Acta 1755: 71-89.
53. McKay BC, Stubbert LJ, Fowler CC, Smith JM, Cardamore RA, et al. (2004) Regulation of ultraviolet light-induced gene expression by gene size. Proc Natl Acad Sci U S A 101: 6582-6586.
54. McKay BC, Winrow C, Rainbow AJ (1997) Capacity of UV-irradiated human fibroblasts to support adenovirus DNA synthesis correlates with transcription-coupled repair and is reduced in SV40-transformed cells and cells expressing mutant p53. Photochem Photobiol 66: 659-664.
55. Chang TH, Ray FA, Thompson DA, Schlegel R (1997) Disregulation of mitotic checkpoints and regulatory proteins following acute expression of SV40 large T antigen in diploid human cells. Oncogene 14: 2383-2393.
56. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20: 1803-1815.
57. Gerweck LE, Vijayappa S, Kurimasa A, Ogawa K, Chen DJ (2006) Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res 66: 8352-8355.
58. Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, et al. (2009) A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys 75: 489-496.
59. Kim HS, Kim SC, Kim SJ, Park CH, Jeung HC, et al. (2012) Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells. BMC Genomics 13: 348.
60. Lin YC, Peng JM, Wang WB (2000) The N-terminal common domain of simian virus 40 large T and small t antigens acts as a transformation suppressor of the HER-2/neu oncogene. Oncogene 19: 2704-2713.
61. Wen CC, Cheng SA, Hsuen SP, Huang YL, Kuo ZK, et al. (2006) SV40 T/t-common polypeptide specifically induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer Res 66: 5847-5857.
62. Hsueh SP, Du JL, Hsu WB, Fang CA, Liu H, et al. (2012) SV40 T/t-common polypeptide enhances the sensitivity of HER2-overexpressing human cancer cells to anticancer drugs cisplatin and doxorubicin. Cancer Lett 324: 48-57.
63. Busser B, Sancey L, Josserand V, Niang C, Favrot MC, et al. (2010) Amphiregulin promotes BAX inhibition and resistance to gefitinib in non-small-cell lung cancers. Mol Ther 18: 528-535.
64. Uittenbogaard M, Baxter KK, Chiaramello A (2009) Cloning and characterization of the 5'UTR of the rat anti-apoptotic Bcl-w gene. Biochem Biophys Res Commun 389: 657-662.
65. Crawford M, Batte K, Yu L, Wu X, Nuovo GJ, et al. (2009) MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun 388: 483-489.
66. Yang X, Yin J, Yu J, Xiang Q, Liu Y, et al. (2012) miRNA-195 sensitizes human hepatocellular carcinoma cells to 5-FU by targeting BCL-w. Oncol Rep 27: 250-257.
67. Yan DW, Fan JW, Yu ZH, Li MX, Wen YG, et al. (2012) Downregulation of Metallothionein 1F, a putative oncosuppressor, by loss of heterozygosity in colon cancer tissue. Biochim Biophys Acta 1822: 918-926.
68. Uchida Y, Houben E, Park K, Douangpanya S, Lee YM, et al. (2010) Hydrolytic pathway protects against ceramide-induced apoptosis in keratinocytes exposed to UVB. J Invest Dermatol 130: 2472-2480.
69. Song L, Xiong H, Li J, Liao W, Wang L, et al. (2011) Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-kappaB pathway in human non-small cell lung cancer. Clin Cancer Res 17: 1839-1849.
70. Speidel D (2010) Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol 20: 14-24.
71. Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17: 631-636.
72. Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM (1987) The functioning of higher eukaryotic genes. Molecular Biology of the Gene. 4th ed. San Francisco: Benjamin-Cummings. pp. 704.
73. Butte AJ, Dzau VJ, Glueck SB (2001) Further defining housekeeping, or "maintenance," genes Focus on "A compendium of gene expression in normal human tissues". Physiol Genomics 7: 95-96.
74. Tu Z, Wang L, Xu M, Zhou X, Chen T, et al. (2006) Further understanding human disease genes by comparing with housekeeping genes and other genes. BMC Genomics 7: 31.
75. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human disease network. Proc Natl Acad Sci U S A 104: 8685-8690.
76. Pilbrow AP, Ellmers LJ, Black MA, Moravec CS, Sweet WE, et al. (2008) Genomic selection of reference genes for real-time PCR in human myocardium. BMC Med Genomics 1: 64.
77. Morgan AA, Dudley JT, Deshpande T, Butte AJ (2010) Dynamism in gene expression across multiple studies. Physiol Genomics 40: 128-140.
78. Cheng WC, Chang CW, Chen CR, Tsai ML, Shu WY, et al. (2011) Identification of reference genes across physiological states for qRT-PCR through microarray meta-analysis. PLoS ONE 6: e17347.
79. Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2: 143-147.
80. Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, et al. (2001) A compendium of gene expression in normal human tissues. Physiol Genomics 7: 97-104.
81. Eisenberg E, Levanon EY (2003) Human housekeeping genes are compact. Trends Genet 19: 362-365.
82. Zhu J, He F, Song S, Wang J, Yu J (2008) How many human genes can be defined as housekeeping with current expression data? BMC Genomics 9: 172.
83. Dezso Z, Nikolsky Y, Sviridov E, Shi W, Serebriyskaya T, et al. (2008) A comprehensive functional analysis of tissue specificity of human gene expression. BMC Biol 6: 49.
84. She X, Rohl CA, Castle JC, Kulkarni AV, Johnson JM, et al. (2009) Definition, conservation and epigenetics of housekeeping and tissue-enriched genes. BMC Genomics 10: 269.
85. Liang S, Li Y, Be X, Howes S, Liu W (2006) Detecting and profiling tissue-selective genes. Physiol Genomics 26: 158-162.
86. Saito-Hisaminato A, Katagiri T, Kakiuchi S, Nakamura T, Tsunoda T, et al. (2002) Genome-wide profiling of gene expression in 29 normal human tissues with a cDNA microarray. DNA Res 9: 35-45.
87. Misra J, Schmitt W, Hwang D, Hsiao LL, Gullans S, et al. (2002) Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome Res 12: 1112-1120.
88. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, et al. (2005) Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21: 650-659.
89. Greco D, Somervuo P, Di Lieto A, Raitila T, Nitsch L, et al. (2008) Physiology, pathology and relatedness of human tissues from gene expression meta-analysis. PLoS ONE 3: e1880.
90. Wang L, Srivastava AK, Schwartz CE (2010) Microarray data integration for genome-wide analysis of human tissue-selective gene expression. BMC Genomics 11 Suppl 2: S15.
91. Vinogradov AE (2004) Compactness of human housekeeping genes: selection for economy or genomic design? Trends Genet 20: 248-253.
92. Vinogradov AE (2006) "Genome design" model: evidence from conserved intronic sequence in human-mouse comparison. Genome Res 16: 347-354.
93. Farre D, Bellora N, Mularoni L, Messeguer X, Alba MM (2007) Housekeeping genes tend to show reduced upstream sequence conservation. Genome Biol 8: R140.
94. Zhu J, He F, Hu S, Yu J (2008) On the nature of human housekeeping genes. Trends Genet 24: 481-484.
95. Zhang L, Li WH (2004) Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol 21: 236-239.
96. Cheng WC, Tsai ML, Chang CW, Huang CL, Chen CR, et al. (2010) Microarray meta-analysis database (M2DB): a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database. BMC Bioinformatics 11: 421.
97. McClintick JN, Edenberg HJ (2006) Effects of filtering by Present call on analysis of microarray experiments. BMC Bioinformatics 7: 49.
98. Parkinson H, Kapushesky M, Kolesnikov N, Rustici G, Shojatalab M, et al. (2009) ArrayExpress update--from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res 37: D868-872.
99. Wilson CL, Miller CJ (2005) Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 21: 3683-3685.
100. Asare AL, Gao Z, Carey VJ, Wang R, Seyfert-Margolis V (2009) Power enhancement via multivariate outlier testing with gene expression arrays. Bioinformatics 25: 48-53.
101. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
102. Hubbell E, Liu WM, Mei R (2002) Robust estimators for expression analysis. Bioinformatics 18: 1585-1592.
103. Liu G, Loraine AE, Shigeta R, Cline M, Cheng J, et al. (2003) NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res 31: 82-86.
104. Greco D, Leo D, di Porzio U, Perrone Capano C, Auvinen P (2008) Pre-filtering improves reliability of Affymetrix GeneChips results when used to analyze gene expression in complex tissues. Mol Cell Probes 22: 115-121.
105. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25-29.
106. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, et al. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34: D354-357.
107. Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE, et al. (2008) Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med 358: 1899-1908.
108. Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36: 431-432.
109. Page GP, Edwards JW, Gadbury GL, Yelisetti P, Wang J, et al. (2006) The PowerAtlas: a power and sample size atlas for microarray experimental design and research. BMC Bioinformatics 7: 84.
110. Tibshirani R (2006) A simple method for assessing sample sizes in microarray experiments. BMC Bioinformatics 7: 106.
111. Lin WJ, Hsueh HM, Chen JJ (2010) Power and sample size estimation in microarray studies. BMC Bioinformatics 11: 48.
112. Wei C, Li J, Bumgarner RE (2004) Sample size for detecting differentially expressed genes in microarray experiments. BMC Genomics 5: 87.
113. Cahan P, Rovegno F, Mooney D, Newman JC, St Laurent G, 3rd, et al. (2007) Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization. Gene 401: 12-18.
114. Ramasamy A, Mondry A, Holmes CC, Altman DG (2008) Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 5: e184.
115. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, et al. (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2: 345-350.
116. Podder S, Mukhopadhyay P, Ghosh TC (2009) Multifunctionality dominantly determines the rate of human housekeeping and tissue specific interacting protein evolution. Gene 439: 11-16.
117. Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, et al. (2002) Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 99: 4465-4470.
118. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101: 6062-6067.
119. Vinogradov AE, Anatskaya OV (2007) Organismal complexity, cell differentiation and gene expression: human over mouse. Nucleic Acids Res 35: 6350-6356.
120. Smith AD, Sumazin P, Zhang MQ (2007) Tissue-specific regulatory elements in mammalian promoters. Mol Syst Biol 3: 73.
121. Salvatico J, Kim JH, Chung IK, Muller MT (2010) Differentiation linked regulation of telomerase activity by Makorin-1. Mol Cell Biochem.
122. DiMascio L, Voermans C, Uqoezwa M, Duncan A, Lu D, et al. (2007) Identification of adiponectin as a novel hemopoietic stem cell growth factor. J Immunol 178: 3511-3520.
123. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, et al. (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454: 232-235.
124. Kuhn RM, Karolchik D, Zweig AS, Trumbower H, Thomas DJ, et al. (2007) The UCSC genome browser database: update 2007. Nucleic Acids Res 35: D668-673.