簡易檢索 / 詳目顯示

研究生: 鄭維中
Cheng, Wei-Chung
論文名稱: 建立臨床的微陣列整合分析資料庫和個體間與個體內基因表現差異之研究
The database construction for microarray clinical meta-analysis and inter/intra individual variance gene expression study
指導教授: 許志楧
Hsu, Ian C.
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 110
中文關鍵詞: 微陣列生物誤差整合研究基準基因資料庫
外文關鍵詞: microarray, biological variance, meta-analysis, reference gene, database
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    在過去十年來,基因晶片應用於臨床研究日益漸增,不論是在癌症分型,尋找疾病之標誌基因,甚至是對治療預後結果的判斷,都有廣泛的應用。然而因為臨床檢體的複雜性常導致結果的爭論性,主要在於臨床檢體所導入的生物誤差過大且難以估計,例如組織檢體中細胞的均質性,個體間和群體間的遺傳差異。因此我們在此研究中探討生物誤差的估計對於研究結果的影響性。我們以胎盤檢體為模型設計實驗,將臨床上常遇到的誤差分成三個層次來探討: 技術誤差,解剖差異和個體差異。另外以尋找“個體間差異基因”為例子,以統計跟生物的觀點來探討當低估誤差時所造成的影響。我們發現當低估誤差時,不可避免的會將沒有統計意義的顯著基因判定成顯著。而且會干擾生物功能上的預測。再者我們發現使用高一點的表現差異為篩選條件,有助於減少甚至消除低估誤差所造成的影響,但是這樣的代價是使得顯著基因個數的減少。在這部分的研究中我們論證了正確估計誤差的重要性。而使用高一點的表現差異也許是一個手段,來改善當實驗設計中無法正確地來估計生物誤差所造成的影響。
    要正確的評估生物誤差,其中很重要的一點就是大量的臨床檢體進行實驗,然而大量實驗所需的龐大研究經費不是一般研究所能負擔的,所幸在近年來MGED社群的“基因晶片最少資訊規範”被廣泛推廣,大量可用的實驗數據可以在網路的資料庫中取得,因此統合不同實驗數據的整合分析在基因晶片的研究中越來越受到重視。然而在公開的基因晶片資料庫中找尋特定所需資料仍存在實務上的困難,再者不同的分析方法及低品質的資料則會分析中導入更多的誤差,而降低整合分析結果的可靠性,為了得到大量可靠臨床實驗數據以進行整合分析,我們建立了一個臨床上的基因晶片整合分析資料庫M2DB,收集了10202片Affymetrix基因晶片的臨床實驗數據,提供友善的介面可利用檢體的臨床資料來進行篩選。在數據處理部分,所有數據皆進行統一化的處理,和提供品質控制參數的設定以去除低品質的實驗,另外也提供未處理之數據以供使用者進行特定的分析。線上查詢介面用五個臨床資料註釋的彈性組合來篩選查詢資料,其包含了生理狀態和組織來源部位。這些註釋根據於GEO資料庫,ArrayExpress資料庫,和所屬的研究論文上的資訊,再以人工的方式和公認的字彙來註解。處理數據和品質控制的演算法皆來自以發表之研究。M2DB提供了一個較低的門檻和統合的處理流程來進行整合研究。我們希望藉由這個資料庫可以促進基因晶片整合研究的發展。
    在此研究中我們接下來利用M2DB進行基因晶片整合分析來找尋適合臨床研究上定量聚合酶連鎖反應所使用的基準基因。定量聚合酶連鎖反應是基因表現定量上的黃金標準,不同實驗技術所得的基因表現量皆以其為最後標準,然而其準確性非常仰賴於數據歸一化時所採用的“基準基因”。一直以來持家基因常被認定為“基準基因”,但是近年來越來越多研究顯示,持家基因的表現常會受到疾病,藥物等因素所影響,進而造成定量聚合酶連鎖反應結果的不準確性。藉由M2DB,在統一化的資料處理和資料的品質控制後,4804個分屬於13種器官/組織類別和4種身體狀態的臨床檢體可納入此研究。計算出每個基因在不同生理狀態和不同器官中其基因表現的變動性。找出個別器官中最穩定表現的基因即為我們所認定的基準基因。有102個基因在多個器官/組織類別中被判定為“基準基因”。在進一步分析中,這些基因在之前的研究中常被認定為持家基因,且有將近71%在Gene Ontology中屬於Gene Expression (GO:0010467)之分類。根據我們的結果,研究者可以選出一個或者是多個“基準基因”來做為定量聚合酶連鎖反應歸一化的依據。


    Abstract
    Over the last decade, microarray studies have had a profound impact on clinical research including cancer classification, seeking biomarkers of diseases, and prognosis prediction. However, the complexity of clinical samples could lead to inconsistent results. It is because the influences of biological variance, introduced from clinical samples, are hard to estimate, such as the heterogeneous of cells in clinical samples, individual and population variance in genetics. In this research, we investigated the influence of estimating the biological variance for the conclusion of research. To break intra- and inter-individual variance in clinical studies down to three levels: technical, anatomic, and individual, we designed experiments and algorithms to investigate three forms of variances. As a case study, a group of “inter-individual variable genes” were identified to exemplify the influence of underestimated variance on the statistical and biological aspects in identification of differentially expressed genes. Our results showed that inadequate estimation of variance inevitably led to the inclusion of non-statistically significant genes into those listed as significant, thereby interfering with the correct prediction of biological functions. Our data demonstrates that an appropriate evaluation of variance is critical in selecting significant genes of differential expression.
    To estimate biological variance precisely, one major point is performing a large number of clinical experiments but it is also too expensive. Fortunately, largely available data could be accessed by public repositories with rapid development of microarray. Meta-analysis of substantial amounts of accumulated data, by integrating valuable information from multiple studies, is becoming more important in microarray research. However, collecting data of special interest from public microarray repositories often present major practical problems. Moreover, including low-quality data may significantly reduce meta-analysis efficiency. To obtain large reliable clinical microarray data, we constructed a microarray meta-analysis database (M2DB) for clinical studies. It is a human curated microarray database designed for easy querying, based on clinical information and for interactive retrieval of either raw or uniformly pre-processed data, along with a set of quality-control metrics. The database contains more than 10,000 previously published Affymetrix GeneChip arrays, performed using human clinical specimens. M2DB allows online querying according to a flexible combination of five clinical annotations describing disease state and sampling location. We hope that this research will promote further evolution of microarray meta-analysis.
    In the following, we utilized M2DB to perform meta-analysis for identifying reference gene for quantitative RT-PCR in clinical studies. The accuracy of quantitative real-time PCR (qRT-PCR) is highly dependent on reliable reference gene(s). Some housekeeping genes which are commonly used for normalization are widely recognized as inappropriate in many experimental conditions. After uniform data preprocessing and data quality control, 4,804 Affymetrix HU-133A arrays performed by clinical samples were classified into four physiological states with 13 organ/tissue types. We identified a list of reference genes for each organ/tissue types which exhibited stable expression across physiological states. Furthermore, 102 genes identified as reference gene candidates in multiple organ/tissue types were selected for further analysis. According to our results, researchers could select single or multiple reference gene(s) for normalization of qRT-PCR in clinical studies.

    Table of Content 中文摘要 I Abstract III CHAPTER 1 Background 1 CHAPTER 2 Intra- and Inter-Individual Variance of Gene Expression in Clinical Studies 5 2.1 Introduction 5 2.2 Material and methods 8 2.2.1 Specimen collection and processing 8 2.2.2 RNA extraction and target preparation 8 2.2.3 Production of Microarrays 9 2.2.4 Microarray data analysis 9 2.2.5 Differential expression and averaged fold change 10 2.2.6 Statistical test 11 2.2.7 Functional enrichment analysis 11 2.3 Results 12 2.3.1 The profiles of three levels of variance 12 2.3.2 Case study: Inter-individual variable gene 13 2.4 Discussion 15 2.5 Conclusions 17 CHAPTER 3 Microarray Meta-analysis Database (M2DB) Construction 18 3.1 Introduction 18 3.2 Construction and content 22 3.2.1 Dataset collection and pre-processing 22 3.2.2 Sample annotation 23 3.2.3 Data quality control 25 3.3 Web interface 27 3.3.1 Query interface 27 3.3.2 Experiment / Sample information 28 3.3.3 Data format and submission 28 3.4 Discussion 29 3.5 Conclusions 32 3.6 Availability 33 CHAPTER 4 Identification of Reference Genes across Physiological States for qRT-PCR through Microarray Meta-Analysis 34 4.1 Introduction 34 4.2 Analysis 37 4.2.1 Microarray data collection, quality control, and pre-processing 37 4.2.2 Selection of Reference Gene Candidates 37 4.2.3Frequent Reference Genes 39 4.2.4 Expression profiles of tRGs and fRGs 40 4.3 Discussion 41 4.4 Conclusions 45 Figures 47 Tables 58 References 63 Appendices 84 A: Summary list of sample location in M2DB 84 B: Summary list of disease information in M2DB 90 C: The complete lists of RGs for the 13 organ/tissue types. 101

    References
    1. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al: Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415(6871):530-536.
    2. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J et al: Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008, 359(19):1995-2004.
    3. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X et al: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403(6769):503-511.
    4. Ein-Dor L, Kela I, Getz G, Givol D, Domany E: Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 2005, 21(2):171-178.
    5. Michiels S, Koscielny S, Hill C: Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 2005, 365(9458):488-492.
    6. Tan PK, Downey TJ, Spitznagel EL, Jr., Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM, Cam MC: Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 2003, 31(19):5676-5684.
    7. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA: Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010, 11(10):733-739.
    8. Liang M, Briggs AG, Rute E, Greene AS, Cowley AW, Jr.: Quantitative assessment of the importance of dye switching and biological replication in cDNA microarray studies. Physiol Genomics 2003, 14(3):199-207.
    9. Severgnini M, Bicciato S, Mangano E, Scarlatti F, Mezzelani A, Mattioli M, Ghidoni R, Peano C, Bonnal R, Viti F et al: Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment. Anal Biochem 2006, 353(1):43-56.
    10. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR et al: Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 2006, 24(9):1140-1150.
    11. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, de Longueville F, Kawasaki ES, Lee KY et al: The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006, 24(9):1151-1161.
    12. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E, Garcia JG, Geoghegan J, Germino G et al: Multiple-laboratory comparison of microarray platforms. Nat Methods 2005, 2(5):345-350.
    13. Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J: Independence and reproducibility across microarray platforms. Nat Methods 2005, 2(5):337-344.
    14. Vinciotti V, Khanin R, D'Alimonte D, Liu X, Cattini N, Hotchkiss G, Bucca G, de Jesus O, Rasaiyaah J, Smith CP et al: An experimental evaluation of a loop versus a reference design for two-channel microarrays. Bioinformatics 2005, 21(4):492-501.
    15. Kerr MK: Design considerations for efficient and effective microarray studies. Biometrics 2003, 59(4):822-828.
    16. Kerr MK, Churchill GA: Experimental design for gene expression microarrays. Biostatistics 2001, 2(2):183-201.
    17. Jeffery IB, Higgins DG, Culhane AC: Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics 2006, 7:359.
    18. Jeanmougin M, de Reynies A, Marisa L, Paccard C, Nuel G, Guedj M: Should we abandon the t-test in the analysis of gene expression microarray data: a comparison of variance modeling strategies. PLoS ONE 2010, 5(9):e12336.
    19. Whitehead A, Crawford DL: Variation within and among species in gene expression: raw material for evolution. Mol Ecol 2006, 15(5):1197-1211.
    20. Kerr MK, Churchill GA: Statistical design and the analysis of gene expression microarray data. Genet Res 2007, 89(5-6):509-514.
    21. Manoli T, Gretz N, Grone HJ, Kenzelmann M, Eils R, Brors B: Group testing for pathway analysis improves comparability of different microarray datasets. Bioinformatics 2006, 22(20):2500-2506.
    22. Jung SH: Sample size and power calculation for molecular biology studies. Methods Mol Biol 2010, 620:203-218.
    23. Bammler T, Beyer RP, Bhattacharya S, Boorman GA, Boyles A, Bradford BU, Bumgarner RE, Bushel PR, Chaturvedi K, Choi D et al: Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2005, 2(5):351-356.
    24. van Beek EA, Bakker AH, Kruyt PM, Hofker MH, Saris WH, Keijer J: Intra- and interindividual variation in gene expression in human adipose tissue. Pflugers Arch 2006.
    25. Hollox EJ, Armour JA, Barber JC: Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 2003, 73(3):591-600.
    26. Heidenblad M, Lindgren D, Veltman JA, Jonson T, Mahlamaki EH, Gorunova L, van Kessel AG, Schoenmakers EF, Hoglund M: Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene 2005, 24(10):1794-1801.
    27. Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW: Allelic variation in human gene expression. Science 2002, 297(5584):1143.
    28. Bray NJ, Buckland PR, Owen MJ, O'Donovan MC: Cis-acting variation in the expression of a high proportion of genes in human brain. Hum Genet 2003, 113(2):149-153.
    29. Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY, Morley M, Spielman RS: Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet 2003, 33(3):422-425.
    30. Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA, Brown PO: Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci U S A 2003, 100(4):1896-1901.
    31. Gruber MP, Coldren CD, Woolum MD, Cosgrove GP, Zeng C, Baron AE, Moore MD, Cool CD, Worthen GS, Brown KK et al: Human lung project: evaluating variance of gene expression in the human lung. Am J Respir Cell Mol Biol 2006, 35(1):65-71.
    32. Sood R, Zehnder JL, Druzin ML, Brown PO: Gene expression patterns in human placenta. Proc Natl Acad Sci U S A 2006, 103(14):5478-5483.
    33. Chowers I, Liu D, Farkas RH, Gunatilaka TL, Hackam AS, Bernstein SL, Campochiaro PA, Parmigiani G, Zack DJ: Gene expression variation in the adult human retina. Hum Mol Genet 2003, 12(22):2881-2893.
    34. Oleksiak MF, Churchill GA, Crawford DL: Variation in gene expression within and among natural populations. Nat Genet 2002, 32(2):261-266.
    35. Pritchard CC, Hsu L, Delrow J, Nelson PS: Project normal: defining normal variance in mouse gene expression. Proc Natl Acad Sci U S A 2001, 98(23):13266-13271.
    36. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G et al: Genetics of gene expression surveyed in maize, mouse and man. Nature 2003, 422(6929):297-302.
    37. Jin W, Riley RM, Wolfinger RD, White KP, Passador-Gurgel G, Gibson G: The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat Genet 2001, 29(4):389-395.
    38. Li J, Liu Y, Kim T, Min R, Zhang Z: Gene expression variability within and between human populations and implications toward disease susceptibility. PLoS Comput Biol 2010, 6(8).
    39. Whitehead A, Crawford DL: Neutral and adaptive variation in gene expression. Proc Natl Acad Sci U S A 2006, 103(14):5425-5430.
    40. Stevens VM, Pavoine S, Baguette M: Variation within and between closely related species uncovers high intra-specific variability in dispersal. PLoS One 2010, 5(6):e11123.
    41. Kliebenstein DJ: A role for gene duplication and natural variation of gene expression in the evolution of metabolism. PLoS One 2008, 3(3):e1838.
    42. Tsai ML, Chang KY, Chiang CS, Shu WY, Weng TC, Chen CR, Huang CL, Lin HK, Hsu IC: UVB radiation induces persistent activation of ribosome and oxidative phosphorylation pathways. Radiat Res 2009, 171(6):716-724.
    43. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003, 4(5):P3.
    44. Cui X, Hwang JT, Qiu J, Blades NJ, Churchill GA: Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 2005, 6(1):59-75.
    45. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J: RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 2006, 22(22):2825-2827.
    46. Boulesteix AL, Hothorn T: Testing the additional predictive value of high-dimensional molecular data. BMC Bioinformatics 2010, 11:78.
    47. Korkola JE, DeVries S, Fridlyand J, Hwang ES, Estep AL, Chen YY, Chew KL, Dairkee SH, Jensen RM, Waldman FM: Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res 2003, 63(21):7167-7175.
    48. Lage-Castellanos A, Martinez-Montes E, Hernandez-Cabrera JA, Galan L: False discovery rate and permutation test: an evaluation in ERP data analysis. Stat Med 2010, 29(1):63-74.
    49. Sohn I, Owzar K, George SL, Kim S, Jung SH: A permutation-based multiple testing method for time-course microarray experiments. BMC Bioinformatics 2009, 10:336.
    50. Guo L, Lobenhofer EK, Wang C, Shippy R, Harris SC, Zhang L, Mei N, Chen T, Herman D, Goodsaid FM et al: Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nat Biotechnol 2006, 24(9):1162-1169.
    51. Pan KH, Lih CJ, Cohen SN: Effects of threshold choice on biological conclusions reached during analysis of gene expression by DNA microarrays. Proc Natl Acad Sci U S A 2005, 102(25):8961-8965.
    52. Chuchana P, Holzmuller P, Vezilier F, Berthier D, Chantal I, Severac D, Lemesre JL, Cuny G, Nirde P, Bucheton B: Intertwining threshold settings, biological data and database knowledge to optimize the selection of differentially expressed genes from microarray. PLoS ONE 2010, 5(10):e13518.
    53. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 1999, 96(12):6745-6750.
    54. Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210.
    55. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG et al: ArrayExpress--a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 2003, 31(1):68-71.
    56. Moreau Y, Aerts S, De Moor B, De Strooper B, Dabrowski M: Comparison and meta-analysis of microarray data: from the bench to the computer desk. Trends Genet 2003, 19(10):570-577.
    57. Ramasamy A, Mondry A, Holmes CC, Altman DG: Key Issues in Conducting a Meta-Analysis of Gene Expression Microarray Datasets. PLoS Med 2008, 5(9):e184.
    58. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM: Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 2004, 101(25):9309-9314.
    59. Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM: Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 2002, 62(15):4427-4433.
    60. Xu L, Geman D, Winslow RL: Large-scale integration of cancer microarray data identifies a robust common cancer signature. BMC Bioinformatics 2007, 8:275.
    61. Rasche A, Al-Hasani H, Herwig R: Meta-analysis approach identifies candidate genes and associated molecular networks for type-2 diabetes mellitus. BMC Genomics 2008, 9:310.
    62. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC et al: Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001, 29(4):365-371.
    63. Larsson O, Sandberg R: Lack of correct data format and comparability limits future integrative microarray research. Nat Biotechnol 2006, 24(11):1322-1323.
    64. Owzar K, Barry WT, Jung SH, Sohn I, George SL: Statistical challenges in preprocessing in microarray experiments in cancer. Clin Cancer Res 2008, 14(19):5959-5966.
    65. Ochsner SA, Steffen DL, Stoeckert CJ, Jr., McKenna NJ: Much room for improvement in deposition rates of expression microarray datasets. Nat Methods 2008, 5(12):991.
    66. Cahan P, Rovegno F, Mooney D, Newman JC, St Laurent G, 3rd, McCaffrey TA: Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization. Gene 2007, 401(1-2):12-18.
    67. Faith JJ, Driscoll ME, Fusaro VA, Cosgrove EJ, Hayete B, Juhn FS, Schneider SJ, Gardner TS: Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res 2008, 36(Database issue):D866-870.
    68. Shi L, Tong W, Fang H, Scherf U, Han J, Puri RK, Frueh FW, Goodsaid FM, Guo L, Su Z et al: Cross-platform comparability of microarray technology: intra-platform consistency and appropriate data analysis procedures are essential. BMC Bioinformatics 2005, 6 Suppl 2:S12.
    69. Han T, Melvin CD, Shi L, Branham WS, Moland CL, Pine PS, Thompson KL, Fuscoe JC: Improvement in the Reproducibility and Accuracy of DNA Microarray Quantification by Optimizing Hybridization Conditions. BMC Bioinformatics 2006, 7 Suppl 2:S17.
    70. Day A, Carlson MR, Dong J, O'Connor BD, Nelson SF: Celsius: a community resource for Affymetrix microarray data. Genome Biol 2007, 8(6):R112.
    71. Praz V, Bucher P: CleanEx: new data extraction and merging tools based on MeSH term annotation. Nucleic Acids Res 2009, 37(Database issue):D880-884.
    72. Ivliev AE, t Hoen PA, Villerius MP, den Dunnen JT, Brandt BW: Microarray retriever: a web-based tool for searching and large scale retrieval of public microarray data. Nucleic Acids Res 2008, 36(Web Server issue):W327-331.
    73. Zhu Y, Davis S, Stephens R, Meltzer PS, Chen Y: GEOmetadb: powerful alternative search engine for the Gene Expression Omnibus. Bioinformatics 2008, 24(23):2798-2800.
    74. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6(1):1-6.
    75. Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H, Pisto T, Saarela M, Skotheim RI, Bjorkman M et al: Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol 2008, 9(9):R139.
    76. Hubbell E, Liu WM, Mei R: Robust estimators for expression analysis. Bioinformatics 2002, 18(12):1585-1592.
    77. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.
    78. Wu ZJ, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F: A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 2004, 99(468):909-917.
    79. Wilson CL, Miller CJ: Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 2005, 21(18):3683-3685.
    80. Cohen Freue GV, Hollander Z, Shen E, Zamar RH, Balshaw R, Scherer A, McManus B, Keown P, McMaster WR, Ng RT: MDQC: a new quality assessment method for microarrays based on quality control reports. Bioinformatics 2007, 23(23):3162-3169.
    81. Asare AL, Gao Z, Carey VJ, Wang R, Seyfert-Margolis V: Power enhancement via multivariate outlier testing with gene expression arrays. Bioinformatics 2009, 25(1):48-53.
    82. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J et al: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80.
    83. Lee YS, Chen CH, Tsai CN, Tsai CL, Chao A, Wang TH: Microarray labeling extension values: laboratory signatures for Affymetrix GeneChips. Nucleic Acids Res 2009, 37(8):e61.
    84. Stevens JR, Doerge RW: Combining Affymetrix microarray results. BMC Bioinformatics 2005, 6:57.
    85. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, de Longueville F, Kawasaki ES, Lee KY et al: The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006, 24(9):1151-1161.
    86. Stokes TH, Torrance JT, Li H, Wang MD: ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses. BMC Bioinformatics 2008, 9 Suppl 6:S18.
    87. Noy NF, Shah NH, Whetzel PL, Dai B, Dorf M, Griffith N, Jonquet C, Rubin DL, Storey MA, Chute CG et al: BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res 2009, 37(Web Server issue):W170-173.
    88. Cote RG, Jones P, Martens L, Apweiler R, Hermjakob H: The Ontology Lookup Service: more data and better tools for controlled vocabulary queries. Nucleic Acids Res 2008, 36(Web Server issue):W372-376.
    89. Gagarin D, Yang Z, Butler J, Wimmer M, Du B, Cahan P, McCaffrey TA: Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions: potential role of STATs, cyclinD1, BAD, and Bcl-XL. J Mol Cell Cardiol 2005, 39(3):453-465.
    90. Yang H, Harrington CA, Vartanian K, Coldren CD, Hall R, Churchill GA: Randomization in laboratory procedure is key to obtaining reproducible microarray results. PLoS ONE 2008, 3(11):e3724.
    91. Martinez R, Pasquier N, Pasquier C: GenMiner: mining non-redundant association rules from integrated gene expression data and annotations. Bioinformatics 2008, 24(22):2643-2644.
    92. Shabalin AA, Tjelmeland H, Fan C, Perou CM, Nobel AB: Merging two gene-expression studies via cross-platform normalization. Bioinformatics 2008, 24(9):1154-1160.
    93. Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8(1):118-127.
    94. Warnat P, Eils R, Brors B: Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes. BMC Bioinformatics 2005, 6:265.
    95. Glaab E, Garibaldi JM, Krasnogor N: ArrayMining: a modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization. Bmc Bioinformatics 2009, 10:358.
    96. Zien A, Aigner T, Zimmer R, Lengauer T: Centralization: a new method for the normalization of gene expression data. Bioinformatics 2001, 17 Suppl 1:S323-331.
    97. Lu B, Yu J, Xu J, Chen J, Lai M: A novel approach to detect differentially expressed genes from count-based digital databases by normalizing with housekeeping genes. Genomics 2009.
    98. Xiong H, Zhang D, Martyniuk CJ, Trudeau VL, Xia X: Using generalized procrustes analysis (GPA) for normalization of cDNA microarray data. BMC Bioinformatics 2008, 9:25.
    99. Wilson DL, Buckley MJ, Helliwell CA, Wilson IW: New normalization methods for cDNA microarray data. Bioinformatics 2003, 19(11):1325-1332.
    100. Autio R, Kilpinen S, Saarela M, Kallioniemi O, Hautaniemi S, Astola J: Comparison of Affymetrix data normalization methods using 6,926 experiments across five array generations. BMC Bioinformatics 2009, 10 Suppl 1:S24.
    101. Bianchi F, Nuciforo P, Vecchi M, Bernard L, Tizzoni L, Marchetti A, Buttitta F, Felicioni L, Nicassio F, Di Fiore PP: Survival prediction of stage I lung adenocarcinomas by expression of 10 genes. J Clin Invest 2007, 117(11):3436-3444.
    102. Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, Delorenzi M, Piccart M, Sotiriou C: Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 2008, 14(16):5158-5165.
    103. Griffith OL, Melck A, Jones SJM, Wiseman SM: Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 2006, 24(31):5043-5051.
    104. Vachani A, Nebozhyn M, Singhal S, Alila L, Wakeam E, Muschel R, Powell CA, Gaffney P, Singh B, Brose MS et al: A 10-gene classifier for distinguishing head and neck squamous cell carcinoma and lung squamous cell carcinoma. Clin Cancer Res 2007, 13(10):2905-2915.
    105. Lu Y, Lemon W, Liu PY, Yi YJ, Morrison C, Yang P, Sun ZF, Szoke J, Gerald WL, Watson M et al: A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLos Med 2006, 3(12):2229-2243.
    106. Kapushesky M, Kemmeren P, Culhane AC, Durinck S, Ihmels J, Korner C, Kull M, Torrente A, Sarkans U, Vilo J et al: Expression Profiler: next generation--an online platform for analysis of microarray data. Nucleic Acids Res 2004, 32(Web Server issue):W465-470.
    107. Herrero J, Al-Shahrour F, Diaz-Uriarte R, Mateos A, Vaquerizas JM, Santoyo J, Dopazo J: GEPAS: A web-based resource for microarray gene expression data analysis. Nucleic Acids Res 2003, 31(13):3461-3467.
    108. Zhu Y, Xu W: EzArray: a web-based highly automated Affymetrix expression array data management and analysis system. BMC Bioinformatics 2008, 9:46.
    109. Xia XQ, McClelland M, Porwollik S, Song W, Cong X, Wang Y: WebArrayDB: cross-platform microarray data analysis and public data repository. Bioinformatics 2009, 25(18):2425-2429.
    110. Rainer J, Sanchez-Cabo F, Stocker G, Sturn A, Trajanoski Z: CARMAweb: comprehensive R- and bioconductor-based web service for microarray data analysis. Nucleic Acids Res 2006, 34(Web Server issue):W498-503.
    111. Butte AJ, Dzau VJ, Glueck SB: Further defining housekeeping, or "maintenance," genes Focus on "A compendium of gene expression in normal human tissues". Physiol Genomics 2001, 7(2):95-96.
    112. Wu YY, Rees JL: Variation in epidermal housekeeping gene expression in different pathological states. Acta Derm Venereol 2000, 80(1):2-3.
    113. Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Bustin SA, Orlando C: Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 2002, 309(2):293-300.
    114. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E, Delabesse E, Macintyre E, Gottardi E, Saglio G et al: Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia 2003, 17(12):2474-2486.
    115. Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, Brittner B, Ludwig B, Schilling M: Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes 2005, 19(2):101-109.
    116. Bas A, Forsberg G, Hammarstrom S, Hammarstrom ML: Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol 2004, 59(6):566-573.
    117. Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ: Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 2006, 6:41.
    118. Cicinnati VR, Shen Q, Sotiropoulos GC, Radtke A, Gerken G, Beckebaum S: Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR. BMC Cancer 2008, 8:350.
    119. Fu LY, Jia HL, Dong QZ, Wu JC, Zhao Y, Zhou HJ, Ren N, Ye QH, Qin LX: Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses. BMC Cancer 2009, 9:49.
    120. Lyng MB, Laenkholm AV, Pallisgaard N, Ditzel HJ: Identification of genes for normalization of real-time RT-PCR data in breast carcinomas. BMC Cancer 2008, 8:20.
    121. Coulson DT, Brockbank S, Quinn JG, Murphy S, Ravid R, Irvine GB, Johnston JA: Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue. BMC Mol Biol 2008, 9:46.
    122. Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA: Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 2008, 8:131.
    123. Saviozzi S, Cordero F, Lo Iacono M, Novello S, Scagliotti GV, Calogero RA: Selection of suitable reference genes for accurate normalization of gene expression profile studies in non-small cell lung cancer. BMC Cancer 2006, 6:200.
    124. Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64(15):5245-5250.
    125. Schmid H, Cohen CD, Henger A, Irrgang S, Schlondorff D, Kretzler M: Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int 2003, 64(1):356-360.
    126. Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M: Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2000, 2(3):143-147.
    127. Fedrigo O, Warner LR, Pfefferle AD, Babbitt CC, Cruz-Gordillo P, Wray GA: A pipeline to determine RT-QPCR control genes for evolutionary studies: application to primate gene expression across multiple tissues. PLoS One 2010, 5(9).
    128. Hamalainen HK, Tubman JC, Vikman S, Kyrola T, Ylikoski E, Warrington JA, Lahesmaa R: Identification and validation of endogenous reference genes for expression profiling of T helper cell differentiation by quantitative real-time RT-PCR. Anal Biochem 2001, 299(1):63-70.
    129. Narsai R, Inanova A, Ng S, Whelan J: Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol 2010, 10(1):56.
    130. Zhou L, Lim QE, Wan G, Too HP: Normalization with genes encoding ribosomal proteins but not GAPDH provides an accurate quantification of gene expressions in neuronal differentiation of PC12 cells. BMC Genomics 2010, 11:75.
    131. Kidd M, Nadler B, Mane S, Eick G, Malfertheiner M, Champaneria M, Pfragner R, Modlin I: GeneChip, geNorm, and gastrointestinal tumors: novel reference genes for real-time PCR. Physiol Genomics 2007, 30(3):363-370.
    132. Su LJ, Chang CW, Wu YC, Chen KC, Lin CJ, Liang SC, Lin CH, Whang-Peng J, Hsu SL, Chen CH et al: Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics 2007, 8:140.
    133. Waxman S, Wurmbach E: De-regulation of common housekeeping genes in hepatocellular carcinoma. BMC Genomics 2007, 8:243.
    134. Nguewa PA, Agorreta J, Blanco D, Lozano MD, Gomez-Roman J, Sanchez BA, Valles I, Pajares MJ, Pio R, Rodriguez MJ et al: Identification of importin 8 (IPO8) as the most accurate reference gene for the clinicopathological analysis of lung specimens. BMC Mol Biol 2008, 9:103.
    135. Gur-Dedeoglu B, Konu O, Bozkurt B, Ergul G, Seckin S, Yulug IG: Identification of endogenous reference genes for qRT-PCR analysis in normal matched breast tumor tissues. Oncol Res 2009, 17(8):353-365.
    136. Popovici V, Goldstein DR, Antonov J, Jaggi R, Delorenzi M, Wirapati P: Selecting control genes for RT-QPCR using public microarray data. BMC Bioinformatics 2009, 10:42.
    137. Shulzhenko N, Yambartsev A, Goncalves-Primo A, Gerbase-DeLima M, Morgun A: Selection of control genes for quantitative RT-PCR based on microarray data. Biochem Biophys Res Commun 2005, 337(1):306-312.
    138. Maccoux LJ, Clements DN, Salway F, Day PJ: Identification of new reference genes for the normalisation of canine osteoarthritic joint tissue transcripts from microarray data. BMC Mol Biol 2007, 8:62.
    139. Pilbrow AP, Ellmers LJ, Black MA, Moravec CS, Sweet WE, Troughton RW, Richards AM, Frampton CM, Cameron VA: Genomic selection of reference genes for real-time PCR in human myocardium. BMC Med Genomics 2008, 1:64.
    140. Folkersen L, Kurtovic S, Razuvaev A, Agardh HE, Gabrielsen A, Paulsson-Berne G: Endogenous control genes in complex vascular tissue samples. BMC Genomics 2009, 10:516.
    141. Lee S, Jo M, Lee J, Koh SS, Kim S: Identification of novel universal housekeeping genes by statistical analysis of microarray data. J Biochem Mol Biol 2007, 40(2):226-231.
    142. de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A: Evidence based selection of housekeeping genes. PLoS One 2007, 2(9):e898.
    143. Kwon MJ, Oh E, Lee S, Roh MR, Kim SE, Lee Y, Choi YL, In YH, Park T, Koh SS et al: Identification of novel reference genes using multiplatform expression data and their validation for quantitative gene expression analysis. PLoS One 2009, 4(7):e6162.
    144. Lee PD, Sladek R, Greenwood CM, Hudson TJ: Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res 2002, 12(2):292-297.
    145. Cheng WC, Tsai ML, Chang CW, Huang CL, Chen CR, Shu WY, Lee YS, Wang TH, Hong JH, Li CY et al: Microarray meta-analysis database (M2DB): a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database. BMC Bioinformatics 2010, 11(1):421.
    146. McClintick JN, Edenberg HJ: Effects of filtering by Present call on analysis of microarray experiments. BMC Bioinformatics 2006, 7:49.
    147. Mieczkowski J, Tyburczy ME, Dabrowski M, Pokarowski P: Probe set filtering increases correlation between Affymetrix GeneChip and qRT-PCR expression measurements. BMC Bioinformatics 2010, 11:104.
    148. Binns D, Dimmer E, Huntley R, Barrell D, O'Donovan C, Apweiler R: QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 2009, 25(22):3045-3046.
    149. She X, Rohl CA, Castle JC, Kulkarni AV, Johnson JM, Chen R: Definition, conservation and epigenetics of housekeeping and tissue-enriched genes. BMC Genomics 2009, 10:269.
    150. Zhu J, He F, Song S, Wang J, Yu J: How many human genes can be defined as housekeeping with current expression data? BMC Genomics 2008, 9:172.
    151. Dezso Z, Nikolsky Y, Sviridov E, Shi W, Serebriyskaya T, Dosymbekov D, Bugrim A, Rakhmatulin E, Brennan RJ, Guryanov A et al: A comprehensive functional analysis of tissue specificity of human gene expression. BMC Biol 2008, 6:49.
    152. Tu Z, Wang L, Xu M, Zhou X, Chen T, Sun F: Further understanding human disease genes by comparing with housekeeping genes and other genes. BMC Genomics 2006, 7:31.
    153. Eisenberg E, Levanon EY: Human housekeeping genes are compact. Trends Genet 2003, 19(7):362-365.
    154. Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P et al: A compendium of gene expression in normal human tissues. Physiol Genomics 2001, 7(2):97-104.
    155. Wan Y-W, Sabbagh E, Raese R, Qian Y, Luo D, Denvir J, Vallyathan V, Castranova V, Guo NL: Hybrid Models Identified a 12-Gene Signature for Lung Cancer Prognosis and Chemoresponse Prediction. PLoS One 2010, 5(8):e12222.
    156. Espinosa E, Sánchez-Navarro I, Gámez-Pozo A, Marin ÁP, Hardisson D, Madero R, Redondo A, Zamora P, San José Valiente B, Mendiola M et al: Comparison of Prognostic Gene Profiles Using qRT-PCR in Paraffin Samples: A Retrospective Study in Patients with Early Breast Cancer. PLoS One 2009, 4(6):e5911.
    157. Rizzi F, Belloni L, Crafa P, Lazzaretti M, Remondini D, Ferretti S, Cortellini P, Corti A, Bettuzzi S: A Novel Gene Signature for Molecular Diagnosis of Human Prostate Cancer by RT-qPCR. PLoS One 2008, 3(10):e3617.
    158. Thorrez L, Van Deun K, Tranchevent LC, Van Lommel L, Engelen K, Marchal K, Moreau Y, Van Mechelen I, Schuit F: Using ribosomal protein genes as reference: a tale of caution. PLoS One 2008, 3(3):e1854.
    159. Arcuri F, Papa S, Meini A, Carducci A, Romagnoli R, Bianchi L, Riparbelli MG, Sanchez JC, Palmi M, Tosi P et al: The translationally controlled tumor protein is a novel calcium binding protein of the human placenta and regulates calcium handling in trophoblast cells. Biol Reprod 2005, 73(4):745-751.
    160. Liu Z, Oughtred R, Wing SS: Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones. Mol Cell Biol 2005, 25(7):2819-2831.
    161. Zhong Q, Gao W, Du F, Wang X: Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 2005, 121(7):1085-1095.
    162. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):RESEARCH0034.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE