研究生: |
謝維哲 |
---|---|
論文名稱: |
以EHD技術增強熱傳之研究 Heat Transfer Enhanced by EHD Technology |
指導教授: | 許文震 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 電液動力學 、電暈放電 、熱對流係數增強 |
外文關鍵詞: | electrohydrodynamics, corona wind, enhanced convection |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是探討使用無動件的EHD (electrohydrodynamics) 技術來改善自然對流下的散熱能力,將電極放置在鰭片外,外加直流高壓電場,施加電壓0∼18kV的實驗範圍內,探討電極形狀如何設計才是一根良好的電極,在本實驗中,電極形狀為尖形時,電荷密度集中導致庫侖力較大,產生平均風速高達1.4m/s,熱對流係數可提升為自然對流係數的2.6倍,同時初始電壓降低許多,火花電壓也隨之下降。若電極形狀為圓形時,熱傳增強效果均不如平面電極。另外也探討溼度對熱傳性能的影響,在低相對溼度為45%的情狀之下,熱對流係數可提升為自然對流係數的3.2倍,其中溼度對負電暈影響比正電暈大,本研究也探討電極極性、電極與鳍片之間的距離、電極直徑、電極數目、排列等等因素對EHD散熱效果的影響。也探討初始電壓、火花電壓之間的操縱範圍電壓的影響因素。實驗結果指出,在負電暈、電極距離大、電極直徑小、電極形狀為尖形、電極數目多、低溼度的情狀下對於熱傳效果更佳。
1.范盛然, “低溫環境下鰭片結霜研究,” 碩士論文, 動力機械工程學系, 國立清華大學 (2003).
2.Robinson, M., “Movement of Air in the Electric Wind of the Corona Discharge,” Transactions of the American Institute of Electrical Engineers, V. 80, pp. 143-150 (1961).
3.Hauksbee, F., “Physico-Mechnical Experiments on Various Subjects,” 1st ed., London, pp. 46-47 (1719).
4.Stuetzer, O. M., “Ion Drag Pressure Generation,” Journal of Applied Physics, V. 30, N. 7, pp. 984-994 (1959).
5.Robinson, M., “Movement of Air in the Electric Wind of the Corona Discharge,” Transactions of the American Institute of Electrical Engineers, V. 80, pp. 143-150 (1961).
6.McDonald, J.R., Smith W.B. and Spencer H.W., “A Mathematical Model for Calculating Electrical Conditions in Wire-Duct Electrostatic Precipitation Devices,” Journal of Applied Physics, V. 48, N. 6, pp2231-2243 (1977).
7.Bonder, H., and F. Bastien, “Effect of Neutral Fluid Velocity on Direct Conversion from Electrical to Fluid Kinetic Energy in an Electro-Fluid-Dynamics (EFD) Drive,” Journal of Physics D: Applied Physics, V. 19, pp. 1657-1663 (1986).
8.Lowke , J. J. and R. Morrow, “Theory of Electric Corona including the Role of Plasma Chemistry,” Pure and Applied Chemistry, V.66, N.6, pp.1287-1294 (1991).
9.Chang, J. S., P. A. Lawless and T. Yamamoto, “Corona Discharge Processes,” IEEE Transactions on Plasma Science, V.19, N.6, pp.1152-1166 (1991).
10.Lai, F. C. and Sharma R.K., “EHD-Enhanced Drying with Multiple Needle Electrode,” Journal of Electrostatics, V. 63, pp.223-237 (2005).
11.Hiroyuki Kawamoto and Shinjiro Umezu, “Electrohydrodynamic Deformation of Water Surface in a Metal Pin to Water Plate Corona Discharge System, ”Journal of Physics, pp.887-894 (2005).
12.O’Brien, R. J. and A. J. Shine, “Some Effects of an Electric Field on Heat Transfer from a Vertical Plate in Free Convection,” Journal of Heat Transfer, V. 89, pp. 114-116 (1967).
13.Kibler, K. G. and H. G. Carter Jr, “Electrocooling in Gases,” Journal of Applied Physics, V. 45, No. 10, pp. 4436-4440 (1974).
14.Mitchell, A. S. and L. E. Williams, “Heat Transfer by the Corona Wind Impinging on a Plate Surface,” Journal of Electrostatics, V. 5, pp. 309-324 (1978).
15.Ohadi, M. M., D. A. Nelson and S. Zia, “Heat Transfer Enhancement of Laminar and Turbulent Pipe Flow via Corona Discharge,” International Journal of Heat and Mass Transfer, V. 34, pp. 1175-1184 (1991).
16.Owsenek, B. L., J. Seyed-Yagoobi and R. H. Page, “Experimental Investigation of Corona Wind Heat Transfer Enhancement with a Heated Horizontal Flat Plate,” Journal of Heat Transfer, V. 119, pp. 309-315 (1995).
17.Owsenek, B. L. and J. Seyed-Yagoobi, “Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement through Wire-Plate Corona Discharge,” Journal of Heat Transfer, V. 119, pp. 604-610 (1997).
18.Bhattacharyya, S. and A. Peterson, “Corona Wind-Augmented Natural Convection – Part 1: Single Electrode Studies,” Journal of Enhancement Heat Transfer, V. 9, pp. 209-219 (2002).
19.Kasayapanand, N. and T. Kiatsiriroat, “EHD Enhance Heat Transfer in Wavy Channel,” International Communications in Heat and Mass Transfer, V. 32, pp.809-821 (2005).
20.Zhao, L. and K. Adamiak, “EHD Flow in Air Produced by Electric Corona Discharge in Pin-Plate Configuration,” Journal of Electrostatics, V. 63, pp. 337-350 (2005).
21.Boutlendj N. L., Allen, H. A. Lightfoot and R. B. Neville, “Positive DC Corona and Sparkover in Short and Long Rod-plane Gaps under Variable Humidity Conditions,” IEE Proceedings-A, V. 138, No. 1, pp. 31-36 (1991).
22.L. Fouad and S. Elhazek, “Effect of Humidity on Positive Corona Discharge in a Three Electrode System, ”Journal of Electrostatics, V.35, pp. 21-30 (1995).
23.I. A. Metwally, “Factors Affecting Corona on Twin-point Gaps under DC and AC HV, ”IEEE , pp.544-553(1996).
24.P. A. Calva and F. P. Espino C., “Threshold Curves of the Various Modes of Corona Discharge in Atmospheric Air,”IEEE, pp.612-615 (1997).
25.P. A. Calva and F. P. Espino C., “Effect of the Humidity in the Ionic Mobility in Reduced Air-Density,” IEEE , pp. 508-511 (1998).
26.Luc Léger, Eric Moreau, and Gérard G. Touchard, “Effect of a DC Corona Electrical Discharge on the Airflow Along a Flat Plate,” IEEE Transaction on Industry Applications, V. 38, No. 6, pp. 1478-1485 (2002).
27.李幸勇, “陣列式針狀電極應用於EHD熱傳增強技術,” 碩士論文,動力機械工程學系, 國立清華大學 (2005).
28.Junhong, C., “Direct-Current Corona Enhanced Chemical Reactions”, Phd Thesis, University of Minnesota, USA, (August 2002).
29.Evans, R. W. and I. I. Inculet, “The Radius of the Visible Ionization Layer for Positive and Negative Coronas,” IEEE Transactions on Industry Applications, V. IA-14, No. 6, pp. 523-525 (1978).
30.Chapman, B., “Glow Discharge Processes :/Sputtering and Plasma Etching /,” Wiley, New York (1980).
31.顏世雄, 粘孝先, 溫坤禮 ,“高壓放電工程,”全華科技圖書股份有限公司.
32.財團法人工業技術研究院,國家度量衡標準實驗室.
33.Radiziemska, E. and W. M. Lewandowski, “The Effect of Plate Size on the National Convective Heat Transfer Intensity of Horizontal Surfaces,” Heat Transfer Engineering, V.26, pp.50-53 (2005).
34.Al-Arabi, M. and M. K. El-Riedy, “Natural Convection Heat Transfer from Isothermal Horizontal Plates of Different Shapes,” International Journal of Heat and Mass Transfer, V.19, pp.1399-1404 (1974) .
35.張兆秋, “鰭片底面裝置針狀電極之EHD增強散熱技術研究,” 碩士論文,動力機械工程學系, 國立清華大學 (2006).