研究生: |
潘杰倫 Sharma, Pankaj |
---|---|
論文名稱: |
官能化及未官能化之二烯烴合成氮氧雜環之新途徑 New Transformations of Functionalized and Unfunctionalized Allenes to Access N-O Containing Heterocycles |
指導教授: |
劉瑞雄 教授
Liu, Rai-Shung |
口試委員: |
鄭建鴻
Cheng, Chien-Hong 吳明忠 Wu, Ming-Chung 莊士卿 Chuang, Shih-Ching 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 555 |
中文關鍵詞: | 氮氧雜環 、二烯烴 |
外文關鍵詞: | Allenes, Heterocycles |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文介紹一新型合成方法將不同官能基之二烯烴轉換為多種含氮氧雜環。其中包含使用金屬或非金屬的高效轉換取得廣泛、多功能的雜環產物。為了更好理解,本文將分成四個章節進行說明。
第一章描述了N-羥基氨基丙二烯在氧氣環境下經由銅催化,和醇、硫醇或氨之不同試劑進行一鍋化、兩步驟反應,得到α-氧、硫以及氮取代的4-甲基喹啉衍生物。此反應一開始N-羥基氨基丙二烯先經由不同的親核基氧化,形成三取代的2-烯-1-酮,之後再經由布朗氏酸催化得到分子內環化產物。我們推測本反應機構是自由基型式,而非典型的硝酮中間體途徑。本篇產物2-氨基-4-甲基喹啉衍生物,為多種生物活化分子的重要前驅物,說明了此新銅催化合成方法的實用性。
第二章論述N-羥基苯胺和亞硝基苯在氧氣環境下,加入氯 [ 1,3-雙(2,6-二異丙基苯基)咪唑-2-亞基 ] 銅(I) 之添加劑 ( 5 mol %),經 [3+2] 環化反應在低溫甲苯中形成異噁唑烷-5-醇衍生物。用1,8-二氮雜二環 [5.4.0] 十一碳-7-烯(DBU)在甲苯中加熱相同的反應,可有效地得到高官能化的吲哚產物。此方法提供一個簡單的反應途徑,能夠合成許多生物活化分子,包含WIN 48098、WIN 53365 和 JWH 015。
第三章描述了雙取代N-羥基烯基胺與亞硝基芳烴,經由鋅催化進行 [4+2] 環化反應,得到骨架重排之取代1,2-惡嗪烷-3-酮產物。這種環化適用於各式合理範圍內的丙二烯胺和亞硝基芳烴。我們的實驗對照指出亞硝基苯同樣也可以透過自由基環化路徑以較低的產率得到產物。三氟甲磺酸鋅與三氟甲磺酸銀可有效地提升[4+2] 環化反應的效率。
最後一章討論丙雙二烯與亞硝基芳,在無金屬、啟動子以及多步驟的條件下進行一自由基成環反應。推測是透過雙自由基反應機制,獲得具有高立體異構性的六氫-二氫-萘並二噁唑和雙環異噁唑烷物質。這些經氮-氧裂解環原得到的雜環提供了有用的各式多羥基胺。溫和的條件、方便的操作以及對環境友善為此反應的優點。
This dissertation describes new transformations of functionalized and unfunctionalized allenes to Access N-O containing heterocycles. It includes metal and metal free efficient transformations of a variety of available allene substrates to synthesized wide range of synthetically useful heterocyclic products. For better understanding, this thesis has been divided into four chapters.
The first chapter describes a one-pot, two-step synthesis of α-O-,S-, and Nsubstituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyamino allenes with alcohols, thiols, and amines. This reaction sequence involves an initial oxidation of N-hydroxyamino allenes with NuH (Nu=OH, OR, NHR, and SR) to form 3-sub-stituted 2-en-1-ones, followed by
Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules.
The second chapter states that in the presence of O2 and an IPrCuCl additive (5 mol %), [3+2]-annulation reactions of N-hydroxyaniline with nitrosobenzenes in cold toluene form isoxazolidin-5-ol derivatives. Heating the same reaction mixture with DBU in toluene affords highly functionalized indole products efficiently. This method provides short synthesis of several bioactive molecules including WIN 48098, WIN 53365 and JWH 015.
The third chapter reports the zinc catalyzed [4+2]-annulation reactions of disubstituted N-hydroxyallenylamines with nitrosoarenes to afford substituted 1, 2-oxazinan-3-ones with a skeletal rearrangement. This annulation is applicable to a reasonable scope of allenyl amines and nitrosoarenes. Our control experiments indicate that nitrosobenzene can also implement this annulation through a radical annulation path, but with poor efficiency. Zn(OTf)2 or AgOTf greatly improves the efficiency of this [4+2]-annulation.
Last chapter discuss inter- and intramolecular metal and activator free cascade free radical annulation reactions of allene-enes and nitrosoarenes. The present methodology is likely to proceed through a diradical mechanism to access hexahydro-2H-naphtho diisoxazole and bicyclic isoxazolidine species with high stereocontol. The reductive N-O cleavage of these resulting heterocycles provides useful diverse polyhydroxyamines. The mild reaction conditions, ease of operation, and environmental favor strategy are several merits of this synthetic protocol.
[1] a) J. H. Boyer, In The Chemistry of the Nitro and Nitroso Groups, Part 1; S. Patai, Ed.; Interscience Publishers: New York, 1969; Chapter 5; b) B. P. Zuman,; Shah, Chem. Rev. 1994, 94, 1621.
[2] A. G. Leach, K. N. Houk, J. Chem. Soc., Chem. Commun., 2002, 1243.
[3] A. Baeyer, Ber., 1874, 7, 1638.
[4] a) P. F. Vogt, M. J. Miller, Tetrahedron 1998, 54, 1317-1348; b) P. Quadrelli, A. G. Invernizzi, P. Caramella, Tetrahedron Lett. 1996, 37, 1909; c) S. K. Quek, I. M. Lyapkalo, H. V. Huynh, Synthesis, 2006, 9, 1423; d) R. E. Banks, M. G. Barlow, R. N. Haszeldine, J. Chem. Soc., 1965, 4714.
[5] a) W. Oppolzer, O. Tamura, Tetrahedron Lett. 1990, 31, 991; b) W. Oppolzer, O. Tamura, G. Sundarababu, M. Signer, J. Am.Chem. Soc. 1992, 114, 5900; c) N. Momiyama, H. Yamamoto, Org. Lett. 2002, 4, 3579.