簡易檢索 / 詳目顯示

研究生: 李亞蓮
Ya-Lien Lee
論文名稱: 以溶液方式製備萘苯亞醯胺衍生物作為n-type有機半導體材料
Solution-Processed Naphthalene Diimide Derivatives as n-type Semiconductor Materials
指導教授: 游萃蓉
Tri-Rung Yew
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 58
中文關鍵詞: 萘苯亞醯胺n-type有機半導體旋轉塗佈法有機電晶體
外文關鍵詞: Naphthalene diimide, n-type organic semiconductor, spin-coating, organic thin film transistor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用不同取代基修飾萘苯酸酐分子(naphthalene dianhyride),合成新穎萘苯亞醯胺分子衍生物(naphthalene diimide derivatives)。並以旋轉塗佈的方式,將萘苯亞醯胺衍生物塗佈於二氧化矽(SiO2)與聚乙烯吡咯烷酮(PVP)為閘極氧化層之基板上。更進一步製作有機電晶體,並於一般大氣下量測有機電晶體場效特性及測試其在空氣中之穩定性,以應用於未來軟性電子元件之有機電晶體半導體材料。
    為能達到未來軟性電子應用上低成本低溫(< 200 ºC)製程之要求,本研究著重於合成可溶性、可塗佈且於一般大氣環境下穩定之新穎n-type有機半導體材料。研究目標包括,第一,改善有機半導體材料於溶劑中之溶解度以達到溶液製程要求;第二,利用旋轉塗佈法製備有機半導體層之有機電晶體元件;第三,需於一般大氣環境中具有相當穩定性。結果顯示,成功地合成出分別為含烷基、含苯基、與含氟化苯基之萘苯亞醯胺衍生物(即NTCDI-C, NTCDI-P, 及NTCDI-F),並於大氣環境下以旋轉塗佈法製備半導體薄膜層。以上三衍生物薄膜晶粒依序為2-3 □m、500-650 nm、與300-400 nm。且以萘苯亞醯胺衍生物為半導體層製作n-type有機電晶體,可於一般大氣環境中量得電晶體場效特性,其中NTCDI-P與NTCDI-F半導體層之有機電晶體元件電子遷移率皆約為10-3 cm2V-1s-1。將之放置於空氣中一週後,NTCDI-F元件之電子遷移率僅有稍微變化,故顯示NTCDI-F於一般大氣下具有一定穩定度。
    綜而言之,本研究已完成在大氣下以低溫(< 200 ºC)溶液方法,製備萘苯亞醯胺衍生物NTCDI-F之新穎n-type有機半導體材料,及製作其有機電晶體元件,並在大氣下量得其電晶體場效特性,且此元件在空氣中具有相當穩定度。足以驗證此NTCDI-F新穎n-type有機半導體材料具備應用於未來軟性電子之可能性


    This work is to synthesize new naphthalene diimide derivatives with different substituted side groups as organic semiconductor materials for future flexible electronic applications. Naphthalene diimide derivatives were spin-coated onto substrate via spin-coating process in air as semiconductor materials for OTFT fabrication using SiO2 or poly(vinyl- phenol) PVP as dielectrics. Electrical characteristics measurement and air-stability tests of OTFTs were carried out in air.
    For low-cost and low temperature process of organic thin film transistor (OTFT) applications, this work is mainly focused on developing new soluble, high air-stability semiconducting materials. The studies include improving solubility of organic semiconductor materials, fabricating OTFT devices via spin-coating process in air, and increasing organic semiconductor air-stability. Results show that three n-type organic material, 1,4,5,8- naphthalene-tetracarboxylic diimide derivatives material with alkyl, phenyl, and (trifluoro-methyl)-benzyl groups (NTCDI-C, NTCDI-P, and NTCDI-F) were successfully synthesized and deposited on a SiO2/Si or PVP/SiO2 wafer by the spin-coating process in air. The grain sizes of above NTCDI-derivatives thin films were 2-3 □m, 500-650 nm, and 300-400 nm, respectively. Transistor characteristics of OTFTs using NTCDI-derivatives as semiconductor layers were measured in air, with the motilities of about 10-3 cm2V-1s-1 for NTCDI-F and NTCDI-P. The NTCDI-F OTFTs also exhibit air-stability with only slight mobility degradation after exposure in air for 7 days.
    In a summary, a new solution-processed n-type semiconductor material, NTCDI-F, has been synthesized and investigated for OTFT fabrication via spin-coating process in air. Transistor characteristics and air-stability of OTFTs using NTCDI-F as semiconductor layers have been achieved. Results have demonstrated the feasibility of using solution-processed NTCDI-derivatives as semiconductors via spin- coating process in air for OTFT fabrication for future applications in flexible integrated circuits (ICs).

    中文摘要 I 英文摘要 III 誌謝 V 第一章 緒論 1 第二章 文獻回顧 3 2.1 有機電晶體 (Organic Thin Film Transistor) 3 2.2 N-type 有機半導體材料 5 2.3 Naphthalene Diimide 衍生物 9 第三章 實驗流程與方法 12 3.1 Naphthalene Diimide 衍生物之合成 14 3.2 基板製備 16 3.3 薄膜製備 17 3.4 有機電晶體製備 18 3.4-1 背閘極(未定義)有機電晶體(Back-gate OTFT) 18 3.4-2 定義閘極之有機電晶體(Patterned-gate OTFT) 19 3.5 有機電晶體於空氣下穩定性測試 20 3.6 分析儀器 21 3.6-1 核磁共振儀 ( NMR Spectrometer) 21 3.6-2 質譜儀 ( Mass Spectrometer) 21 3.6-3 紫外光/可見光光譜儀 (UV-vis Spectrophotometer)與光致螢光光譜儀 (Photoluminescence Spectrophotometer) 22 3.6-4 熱重分析儀 (Thermogravimeteric Analysis, TGA) 23 3.6-5 原子顯微鏡 (Atomic Force Microscope, AFM) 24 3.6-6 X光繞射分析儀 ( X-Ray Diffractometer ) 24 3.6-7電性量測儀 (Semiconductor Parameter Analyzer) 25 第四章 實驗結果與討論 26 4.1 Naphthalene Diimide 材料合成及鑑定 26 4.2 熱性質鑑定 29 4.3 光學性質與能帶分析 31 4.4 薄膜製程參數最佳化 34 4.5 結晶結構分析 40 4.6 半導體特性探討 44 第五章 結論 52 參考文獻 54

    [1] G. Horowitz, J. Mater. Res. 19, 1946
    [2] C. Reese, M. Roberts, M.-M. Ling, Z. Bao, Materials Today, 2004, Sep., 20
    [3] D. M. de Leeuw , Nature 2000, 407, 202
    [4] H. E. Huitema, G. H. Golinck, van der Putten, J. B. P. H., K. E. Kuijk, P. T. Herwig, van Breement, A. J. J. M., D. M. de leeuw , Nature 2001, 414, 599
    [5] Y. Chen., J. Au., P. Kzalas, A. Ritenour, H. Gates, M. McCreary, Nature 2003, 423, 136
    [6] C. D. Dimitrakopoluos, P. Malenfant, Adv. Mater. 2002, 14, 99
    [7] H. E. Katz, Z. Bao, S. Gilat, Acc. Chem. Res. 2001, 34, 359
    [8] J. H. Schon, C. Kloc, B. Batlogg, Org. Electron. 2000, 1, 57
    [9] H. E. Katz, A. J. Loringer, J. G. Laquindanum, Chem. Mater. 1998, 10, 457
    [10] H. Sirringhaus, Adv. Mater. 2005, 17, 2411
    [11] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siogrist, W. Li, Y.-Y. Lin, A. Dodabalapur, Nature 2000, 404, 478
    [12] A. R. Brown, D. M. de Leeuw, E. J. Lous and E. E. Havinga, Synth. Met. 1994, 66, 257
    [13] S. Ando, R. Murakami, J.-I. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 14996
    [14] B. A. Jones, M. J. Ahrens, M.-M. Yoon, A. Facchetti, T. J. Marks, M. R. Wasielewski, Angew. Chem. 2004, 43, 6363
    [15] S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Appl. Phys. Lett. 2003, 82, 4581
    [16] K. N. Narayanan Unni, A. K. Pandey, J.-M. Nunzi, Chem. Phys. Lett. 2005, 409, 95
    [17] J. A. Letizia, A. Facchetti, C. L. Stern, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 13476
    [18] M. Chikamatsu, S. Nagamatsu, Y. Yoshida, K. Saito, K. Yase, K. Kikuchi, Appl. Phys. Lett. 2005, 87, 203504
    [19] T.-W. Lee, Y. Byun, B.-W. Koo, I.-N. Kang, Y.-Y. Lyu, C. H. Lee, L. Pu, S. Y. Lee, Adv. Mater. 2003, 17, 2180
    [20] A. Babel, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 13656
    [21] S. Lacombe, M. Loudet, E. Banchereau, M. Simon, G. Pfister-Guillouzo, J. Am. Chem. Soc. 1996, 118, 1131
    [22] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Seigrist, W. Li, Y.-Y Lin, A.Dodabalapur, Nature 2000, 404, 478
    [23] B. A. Jones, A. Facchetti, T. J. Marks, M. R. Wasielewski, Chem. Mater. 2007, 19, 2073
    [24] H. E. Katz, J. Johnson, A. J. Lovinger, W. Li, J. Am. Chem. Soc. 2000, 122, 7787
    [25] H. E. katz, X. M. Hong, A. Dodabalapur, R. Sarpeshkar, J. Appl. Phys. 2002, 91, 1572
    [26] T. B. Singh, S. Erten, S. Günes, C. Zafer, G. Turkmen, B. Kuhan, Y. Teoman, N. S. Sariciftci, S. Icli, Organic Electronics, 2006, 7, 480
    [27] H. Z. Chen, M. M. Ling, X. Mo, M. M. Shi, M. Wang, Z. Bao, Chem. Mater. 2007, 19, 81
    [28] S. Erten, S. Alp, S. Icli, J. Photochem. Photobiol. A : Chem. 2005, 175, 214
    [29] M.-M. Shi, H.-Z. Chen, J.-Z. Sun, J. Ye, M. Wang, Chem. Common. 2003, 14, 1710
    [30] H. E. Katz., T. Siegrist, J. H. Schön, C. Kloc, B. Batlogg, A. J. Lovinger, J. Johnson, ChemPhysChem 2001, 3, 167
    [31] Y. Ofir, A. Zelicenok, S. Yitzchaik, J. Mater. Chem. 2006, 16, 2142
    [32] S. Mohapatra, B. T. Holmes, C. R. Newman, C. F. Prendergast, C. D. Frisbie, M. D. Ward, Adv. Funct. Mater. 2004, 14, 605
    [33] S. C. Lim, S. H. Kim, J. H. Lee, M. K. Kim, D. J. Kim, T. Zyung, Syn. Met. 2005, 148, 75
    [34] A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chem. Int. Ed. 2000, 39, 4547
    [35] 林敬二,林宗義, 材料分析 美亞書版有限公司 1994年5月
    [36] 許樹思,吳泰伯, X光繞射原理與材料結構分析 中國材料科學學會 1994年7月

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE