研究生: |
黃聖智 Huang, Sheng Jhih |
---|---|
論文名稱: |
有機無機錫鉛混合型鈣鈦礦太陽能電池及其在大氣環境降解機制之研究 Degradation Mechanism Study of Mixed Tin-Lead Iodide Perovskite Solar Cell Materials |
指導教授: |
楊耀文
Yang, Yaw-Wen |
口試委員: |
陳益佳
Chen, I-Chia 刁維光 Diau, Eric W.G |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 170 |
中文關鍵詞: | 鈣鈦礦 、錫 、降解 、X光光電子激發能譜 |
外文關鍵詞: | perovskite, tin, degradation, XPS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中探討錫鉛混合鈣鈦礦對於大氣環境的穩定性及降解機制相關研究,透過有系統的調整錫和鉛中心金屬比例以及陽離子甲脒及甲基銨得到最佳鈣鈦礦比例MA0.5FA0.5Sn0.25Pb0.75I3,並進一步利用MA0.5FA0.5Sn0.25Pb0.75I3以及單一陽離子MASn0.25Pb0.75I3和FASn0.25Pb0.75I3以進行大氣環境降解模擬研究,透過設計了三種六小時照光環境分別為低溼度氧氣、高溼度氮氣、及高溼度氧氣共存的環境。由XPS數據可以發現在低溼度氧氣並同時照光的環境下對於鈣鈦礦中陰離子I 3d訊號明顯減弱並產生I2(s),主要原因是氧氣與受到照光激發的鈣鈦礦產生超氧化物(superoxide(O2-)),並進一步與鈣鈦礦反應,造成鈣鈦礦降解。同時鈣鈦礦中陽離子FA+較MA+對於超氧化物有較強的抵抗力,其N 1s受到破壞較輕微,不過在高溼度氮氣環境下由於FA+對水氣較敏感因此在N 1s細掃圖譜中有較嚴重的破壞,以進行水解並進一步去質子化反應。而樣品MA0.5FA0.5Sn0.25Pb0.75I3中的兩種陽離子亦有同樣的趨勢。在中心金屬錫氧化部份,皆會發現正二價錫訊號明顯減弱,反應了不同陽離子MA+和FA+並無法對於中心金屬錫氧化效應具有明顯抵抗的效果。Sn 3d的細掃圖譜偵測到Sn+2氧化後形成正四價的錫相關產物相對於Sn+2易氧化的特性,較穩定的Pb+2並無明顯變化。看到在高溼度氧氣時,中心金屬Sn氧化的情況大致上較偏向於H2O,表示H2O相較於O2有較優先的反應順序,可能是因為H2O相對O2較易吸附在鈣鈦礦上,阻礙了O2和中心金屬Sn的反應。綜合三種環境的結果,陰離子、陽離子及中心金屬降解反應,最終造成鈣鈦礦的崩壞。
In this thesis, we report on an environmental stability study of mixed tin/ lead perovskite (PSK) solar cell materials. By systematically varying the cation ratios of Sn/Pb and formamidinium (FA)/ methylammonium (MA) in the PSK for the highest efficiency of solar cell based on p-i-n configuration of FTO/ PEDOT:PSS/ PSK/ C60/ BCP/Ag, an optimal composition of MA0.5FA0.5Sn0.25Pb0.75I3 was obtained with a power conversion efficiency of 11.7%. This MA0.5FA0.5Sn0.25Pb0.75I3 and the other two sole-cation PSK’s, MASn0.25Pb0.75I3 and FASn0.25Pb0.75I3, were then irradiated with AM1.5 light while exposed to three types of gaseous ambient for 6 h: dry O2, moist N2, and moist O2, with relative humidity controlled either below 10% or above 70% for dry and moist conditions, respectively. XPS results show that the light illumination in dry O2 condition leads to a large I 3d signal decrease and the formation of I2, believed to be due to superoxide formed from electron attachment reaction of O2 with electrons provided by the photosensitized PSK. Moreover, FA is found to be less reactive toward superoxide than MA, as judged from XPS N 1s signal. In contrast, under moist N2 condition, FA is found to degrade further than MA mostly through deprotonation reactions, presumably due to its higher affinity with water molecules via H-bonding. Sn+2 in PSK is easily oxidized into Sn+4 to yield SnO2 and other PSK of +4 oxidation state like MA2SnI6, whereas almost no chemical state change is found for Pb. In moist O2 environment, the oxidation of Sn seems to resemble that occurred in moist N2, suggesting that PSK is prone to the attack by H2O than O2. Taken together, the degradation of mixed Sn and Pb PSK proceeds through the loss of both types of cations as dictated by their respective chemistry, and the oxidation of metal cations.
(1) https://commons.wikimedia.org/wiki/File:World_energy_consumption_by_fuel.svg.
(2) http://www.upsbatterycenter.com/blog/a-new-and-more-efficient-solar-cell/.
(3) https://zh.wikipedia.org/zh-tw/PN%E7%BB%93.
(4) http://www.giichinese.com.tw/report/sne180623-eva-film-solar-cell.html.
(5) http://met.usc.edu/projects/solarcells.php.
(6) http://pveducation.org/pvcdrom/short-circuit-current.
(7) http://designer.mech.yzu.edu.tw.
(8) http://www.che.rochester.edu/Projects/tanglab/research/cdte.html.
(9) Tang, C. W. Appl.Phys.Lett. 1986, 48, 183.
(10) http://www.sigmaaldrich.com/materials-science/organic-electronics/opv-tutorial.html.
(11) http://www.nrel.gov/.
(12) Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Renew. Sust. Energ. Rev 2017, 68, 234.
(13) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc 2009, 131, 6050.
(14) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G. Sci Rep 2012, 2, 591.
(15) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506.
(16) https://en.wikipedia.org/wiki/Goldschmidt_tolerance_factor.
(17) Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.-C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Nano Today 2015, 10, 355.
(18) Brivio, F.; Walker, A. B.; Walsh, A. APL Mater. 2013, 1, 042111.
(19) Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628.
(20) Liu, Y.; Yang, Z.; Cui, D.; Ren, X.; Sun, J.; Liu, X.; Zhang, J.; Wei, Q.; Fan, H.; Yu, F.; Zhang, X.; Zhao, C.; Liu, S. F. Adv. Mater. 2015, 27, 5176.
(21) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.
(22) Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Nat. Commun. 2014, 5, 5757.
(23) Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. J. Phys. Chem. C 2013, 117, 13902.
(24) Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N. Adv. Funct. Mater. 2014, n/a.
(25) Tidhar, Y.; Edri, E.; Weissman, H.; Zohar, D.; Hodes, G.; Cahen, D.; Rybtchinski, B.; Kirmayer, S. J. Am. Chem. Soc. 2014, 136, 13249.
(26) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019.
(27) Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Gratzel, M. Angew. Chem. Int. Ed. 2014, 53, 3151.
(28) Choi, H.; Jeong, J.; Kim, H.-B.; Kim, S.; Walker, B.; Kim, G.-H.; Kim, J. Y. Nano Energy 2014, 7, 80.
(29) Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S. M.; Röthlisberger, U.; Grätzel, M. Energy Environ. Sci. 2016, 9, 656.
(30) Bernal, C.; Yang, K. J. Phys. Chem. C 2014, 118, 24383.
(31) Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J. Energy & Environmental Science 2014, 7, 3061.
(32) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nat. Photon. 2014, 8, 489.
(33) Wang, F.; Ma, J.; Xie, F.; Li, L.; Chen, J.; Fan, J.; Zhao, N. Adv. Funct. Mater. 2016, 26, 3417.
(34) Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W. L.; Boix, P. P.; Grimsdale, A. C.; Mhaisalkar, S. G.; Mathews, N. J. Mater. Chem. A 2015, 3, 14996.
(35) Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I. J. Am. Chem. Soc. 2016, 138, 3974.
(36) Yang, Z.; Rajagopal, A.; Chueh, C. C.; Jo, S. B.; Liu, B.; Zhao, T.; Jen, A. K. Adv. Mater. 2016, 28, 8990.
(37) Liang, K.; Mitzi, D. B.; Prikas, M. T. Chem. Mater. 1998, 10, 403.
(38) Mitzi, D. B. Chem. Mater. 2001, 13, 3283.
(39) Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 11445.
(40) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.
(41) Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
(42) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622.
(43) Yokoyama, T.; Cao, D. H.; Stoumpos, C. C.; Song, T. B.; Sato, Y.; Aramaki, S.; Kanatzidis, M. G. J. Phys. Chem. Lett. 2016, 7, 776.
(44) Chueh, C. C.; Li, C. Z.; Jen, A. K. Y. Energy Environ. Sci. 2015, 8, 1160.
(45) Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. Angew. Chem. Int. Ed. 2015, 54, 8208.
(46) Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat. Commun. 2017, 8, 15218.
(47) Saparov, B.; Sun, J. P.; Meng, W.; Xiao, Z.; Duan, H. S.; Gunawan, O.; Shin, D.; Hill, I. G.; Yan, Y.; Mitzi, D. B. Chem. Mater. 2016, 28, 2315.
(48) Marshall, K. P.; Walton, R. I.; Hatton, R. A. J. Mater. Chem. A 2015, 3, 11631.
(49) http://www.xpsfitting.com/2012/08/shake-up-structure.html.
(50) Hao, F.; Stoumpos, C. C.; Chang, R. P.; Kanatzidis, M. G. J. Am. Chem. Soc 2014, 136, 8094.